Hyperparameters for CMHGNN

We tested the following hyperparameter space:

Parameter Ranges
Learning Rateate [0.01 to 0.0001]
Batch Size [20, 32, 64, 50, 80, 100]
embedding_size Size [20, 32, 50, 64, 80, 100]
L2 Penality [0.0001 to 0.00001]
Epoch [10, 15, 20]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.309
  • Standard deviation: 0.055
  • Maximum value: 0.387
  • Minimum value: 0.182
Parameters/Metrics MRR@20
CM_HGCN-epoch=10-lr=0.002-batch_size=50-embedding_size=20-l2=1e-05 0.324
CM_HGCN-epoch=0.0003-batch_size=50-embedding_size=50-l2=0.0001 0.322
CM_HGCN-epoch=10-lr=0.0003-batch_size=20-embedding_size=50-l2=1e-05 0.332
CM_HGCN-epoch=10-lr=0.002-batch_size=20-embedding_size=100-l2=0.0001 0.252
CM_HGCN-epoch=15-lr=0.0009-batch_size=50-embedding_size=20-l2=0.0001 0.332
CM_HGCN-epoch=10-lr=0.0008-batch_size=20-embedding_size=50-l2=0.0001 0.311
CM_HGCN-epoch=15-lr=0.0006-batch_size=50-embedding_size=100-l2=1e-05 0.369
CM_HGCN-epoch=10-lr=0.0003-batch_size=100-embedding_size=20-l2=1e-05 0.387
CM_HGCN-epoch=10-lr=0.007-batch_size=50-embedding_size=100-l2=0.0001 0.182
CM_HGCN-epoch=15-lr=0.0006-batch_size=20-embedding_size=50-l2=1e-05 0.360
CM_HGCN-epoch=10-lr=0.0008-batch_size=100-embedding_size=50-l2=0.0001 0.352
CM_HGCN-epoch=10-lr=1e-04-batch_size=100-embedding_size=20-l2=0.0001 0.358
CM_HGCN-epoch=10-lr=0.001-batch_size=50-embedding_size=50-l2=1e-05 0.366
CM_HGCN-epoch=-lr=0.0006-batch_size=20-embedding_size=100-l2:0.0001 0.324
CM_HGCN-epoch=15-lr=0.0004-batch_size=20-embedding_size=100-l2=0.0001 0.320
CM_HGCN-epoch=20-lr=0.009-batch_size=50-embedding_size=20-l2=0.0001 0.218
CM_HGCN-epoch=15-lr=0.003-batch_size=50-embedding_size=50-l2=0.0001 0.280
CM_HGCN-epoch=20-lr=0.001-batch_size=50-embedding_size:100-l2=1e-05 0.372
CM_HGCN-epoch=15-lr=0.007-batch_size=100-embedding_size=100-l2=1e-05 0.334
CM_HGCN-epoch=10-lr=0.001-batch_size=20-embedding_size=80-l2=0.0005 0.222
CM_HGCN-epoch=10-lr=0.0009-batch_size=50-embedding_size=80-l2=0.0005 0.251
CM_HGCN-epoch=10-lr=0.001-batch_size=50-embedding_size=100-l2=0.0005 0.266
CM_HGCN-epoch=15-lr=0.001-batch_size=32-embedding_size=80-l2=0.0005 0.237
CM_HGCN-epoch=15-lr=0.0007-batch_size=50-embedding_size=20-l2=0.0005 0.299
CM_HGCN-epoch=20-lr=0.0009-batch_size=50-embedding_size=100-l2=1e-05 0.354

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.248
  • Standard deviation: 0.034
  • Maximum value: 0.282
  • Minimum value: 0.125
Parameters/Metrics MRR@20
CM_HGCN-epoch=15-lr=0.005-batch_size=32-embedding_size=50-l2=0.0001 0.257
CM_HGCN-epoch=20-lr=0.009-batch_size=100-embedding_size=50-l2=0.0005 0.125
CM_HGCN-epoch=20-lr=0.007-batch_size=80-embedding_size=50-l2=1e-05 0.267
CM_HGCN-epoch=15-lr=0.007-batch_size=20-embedding_size=50-l2=0.0001 0.217
CM_HGCN-epoch=15-lr=0.0002-batch_size=80-embedding_size=80-l2=0.0003 0.271
CM_HGCN-epoch=15-lr=0.0007-batch_size=80-embedding_size=50-l2=0.0005 0.274
CM_HGCN-epoch=10-lr=0.0006-batch_size=20-embedding_size=20-l2=0.0005 0.272
CM_HGCN-epoch=15-lr=0.01-batch_size=100-embedding_size=100-l2=0.0001 0.250
CM_HGCN-epoch=20-lr=0.0007-batch_size=20-embedding_size=20-l2=0.0001 0.237
CM_HGCN-epoch=20-lr=0.007-batch_size=100-embedding_size=100-l2=0.0005 0.231
CM_HGCN-epoch=15-lr=0.008-batch_size=100-embedding_size=50-l2=0.0005 0.217
CM_HGCN-epoch=10-lr=0.003-batch_size=100-embedding_size=100-l2=1e-05 0.278
CM_HGCN-epoch=10-lr=0.006-batch_size=50-embedding_size=20-l2=0.0003 0.207
CM_HGCN-epoch=20-lr=0.005-batch_size=20-embedding_size=20-l2=0.0003 0.224
CM_HGCN-epoch=20-lr=0.0009-batch_size=80-embedding_size=50-l2=0.0003 0.280
CM_HGCN-epoch=10-lr=0.007-batch_size=100-embedding_size=20-l2=0.0001 0.255
CM_HGCN-epoch=15-lr=0.006-batch_size=80-embedding_size=100-l2=0.0001 0.249
CM_HGCN-epoch=20-lr=0.0008-batch_size=80-embedding_size=100-l2=0.0005 0.266
CM_HGCN-epoch=20-lr=0.005-batch_size=20-embedding_size=20-l2=0.0001 0.243
CM_HGCN-epoch=10-lr=0.003-batch_size=20-embedding_size=100-l2=0.0003 0.237
CM_HGCN-epoch=20-lr=0.0002-batch_size=100-embedding_size=50-l2=0.0005 0.282
CM_HGCN-epoch=10-lr=1e-04-batch_size=32-embedding_size=20-l2=0.0001 0.236
CM_HGCN-epoch=15-lr=0.003-batch_size=50-embedding_size=20-l2=1e-05 0.277
CM_HGCN-epoch=10-lr=0.0003-batch_size=20-embedding_size=100-l2=0.0001 0.282
CM_HGCN-epoch=10-lr=0.0009-batch_size=32-embedding_size=100-l2=0.0003 0.273

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.353
  • Standard deviation: 0.120
  • Maximum value: 0.528
  • Minimum value: 0.083
Parameters/Metrics MRR@20
CM_HGCN-epoch=20-lr=0.007-batch_size=20-embedding_size=50-l2=0.0001 0.188
CM_HGCN-epoch=20-lr=0.003-batch_size=50-embedding_size=100-l2=0.0001 0.330
CM_HGCN-epoch=20-lr=0.01-batch_size=50-embedding_size=100-l2=1e-05 0.271
CM_HGCN-epoch=20-lr=0.009-batch_size=100-embedding_size=100-l2=0.0001 0.243
CM_HGCN-epoch=20-lr=0.004-batch_size=20-embedding_size=20-l2=0.0001 0.309
CM_HGCN-epoch=20-lr=0.001-batch_size=100-embedding_size=50-l2=0.0001 0.469
CM_HGCN-epoch=20-lr=0.0003-batch_size=50-embedding_size=20-l2=0.0001 0.466
CM_HGCN-epoch=20-lr=0.006-batch_size=100-embedding_size=50-l2=1e-05 0.424
CM_HGCN-epoch=20-lr=0.005-batch_size=20-embedding_size=100-l2=0.0001 0.190
CM_HGCN-epoch=20-lr=0.0006-batch_size=50-embedding_size=100-l2=1e-05 0.512
CM_HGCN-epoch=20-lr=0.006-batch_size=80-embedding_size=80-l2=0.0003 0.196
CM_HGCN-epoch=20-lr=0.0007-batch_size=20-embedding_size=100-l2=0.0001 0.370
CM_HGCN-epoch=20-lr=0.002-batch_size=100-embedding_size=50-l2=0.0003 0.365
CM_HGCN-epoch=20-lr=0.009-batch_size=50-embedding_size=20-l2=1e-05 0.364
CM_HGCN-epoch=20-lr=0.002-batch_size=20-embedding_size=80-l2=0.0003 0.239
CM_HGCN-epoch=20-lr=1e-04-batch_size=50-embedding_size=20-l2=0.0001 0.473
CM_HGCN-epoch=20-lr=0.01-batch_size=20-embedding_size=50-l2=0.0003 0.083
CM_HGCN-epoch=20-lr=0.0006-batch_size=20-embedding_size=50-l2=0.0001 0.393
CM_HGCN-epoch=20-lr=0.0002-batch_size=20-embedding_size=20-l2=1e-05 0.416
CM_HGCN-epoch=20-lr=0.0003-batch_size=100-embedding_size=100-l2=1e-05 0.528
CM_HGCN-epoch=20-lr=0.004-batch_size=64-embedding_size=32-l2=1e-05 0.474
CM_HGCN-epoch=20-lr=0.005-batch_size=50-embedding_size=32-l2=1e-05 0.422
CM_HGCN-epoch=20-lr=0.0008-batch_size=64-embedding_size=100-l2=1e-05 0.510
CM_HGCN-epoch=20-lr=0.01-batch_size=32-embedding_size=80-l2=1e-05 0.254
CM_HGCN-epoch=10-lr=0.0006-batch_size=32-embedding_size=64-l2=0.001 0.331

Hyperparameters for MGS

We tested the following hyperparameter space:

Parameter Ranges
Learning Rate [0.01 to 0.0001]
Batch Size [16, 20, 32, 64, 80, 128]
L2 Penality [0.00001, 0.0001, 0.000001, 0.001]
Dropout [0.1,0.2,0.3, 0.5]
Epoch [10, 12, 15, 20, 25]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.288
  • Standard deviation: 0.053
  • Maximum value: 0.381
  • Minimum value: 0.204
Parameters/Metrics MRR@20
MGS-epoch=12-lr=0.0045-batch_size=64-l2=0.0001-dropout=0.5 0.325
MGS-epoch=12-lr=0.0034-batch_size=64-l2=0.001-dropout=0.3; 0.250
MGS-epoch=12-lr=0.01-batch_size=64-l2=0.0001-dropout=0.5; 0.313
MGS-epoch=12-lr=0.0067-batch_size=64-l2=0.0001-dropout=0.1; 0.315
MGS-epoch=12-lr=0.0045-batch_size=128-l2=0.001-dropout=0.1 0.257
MGS-epoch=12-lr=0.01-batch_size=32-l2=0.0001-dropout=0.1 0.289
MGS-epoch=12-lr=0.0078-batch_size=128-l2=1e-05-dropout=0.2 0.353
MGS-epoch=12-lr=0.0045-batch_size=128-l2=0.0001-dropout=0.3 0.352
MGS-epoch=12-lr=0.0034-batch_size=32-l2=1e-06-dropout=0.2 0.351
MGS-epoch=12-lr=0.0056-batch_size=128-l2=0.001-dropout=0.2 0.264
MGS-epoch=12-lr=0.0023-batch_size=64-l2=0.001-dropout=0.5 0.261
MGS-epoch=12-lr=0.0045-batch_size=32-l2=0.001-dropout=0.5 0.216
MGS-epoch=12-lr=0.0067-batch_size=32-l2=0.001-dropout=0.5 0.212
MGS-epoch=12-lr=0.0089-batch_size=32-l2=0.0001-dropout=0.1 0.275
MGS-epoch=12-lr=0.0078-batch_size=32-l2=0.001-dropout=0.5 0.214
MGS-epoch=20-lr=0.01-batch_size=16-l2=0.001-dropout=0.5 0.204
MGS-epoch=10-lr=0.0023-batch_size=32-l2=0.0001-dropout=0.5 0.317
MGS-epoch=20-lr=0.0056-batch_size=64-l2=1e-05-dropout=0.1 0.356
MGS-epoch=15-lr=0.0034-batch_size=32-l2=0.001-dropout=0.3 0.241
MGS-epoch=20-lr=1e-04-batch_size=128-l2=1e-05-dropout=0.5 0.351
MGS-epoch=20-lr=0.0034-batch_size=16-l2=0.0001-dropout=0.5 0.276
MGS-epoch=20-lr=0.0034-batch_size=32-l2=0.001-dropout=0.3 0.230
MGS-epoch=20-lr=0.0056-batch_size=16-l2=1e-06-dropout=0.2 0.312
MGS-epoch=10-lr=0.0045-batch_size=128-l2=1e-05-dropout=0.2 0.381
MGS-epoch=15-lr=0.0067-batch_size=16-l2=1e-05-dropout=0.5 0.286

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.272
  • Standard deviation: 0.018
  • Maximum value: 0.293
  • Minimum value: 0.217
Parameters/Metrics MRR@20
MGS-epoch=25-lr=0.0034-batch_size=64-l2=0.0001-dropout=0.2 0.291
MGS-epoch=15-lr=0.0045-batch_size=32-l2=0.001-dropout=0.2 0.268
MGS-epoch=20-lr=0.0067-batch_size=80-l2=1e-05-dropout=0.6 0.290
MGS-epoch=20-lr=0.0078-batch_size=128-l2=0.001-dropout=0.1 0.265
MGS-epoch=25-lr=0.0023-batch_size=128-l2=0.001-dropout=0.6 0.272
MGS-epoch=10-lr=0.0056-batch_size=128-l2=0.001-dropout=0.3 0.271
MGS-epoch=20-lr=0.0023-batch_size=20-l2=0.0001-dropout=0.2 0.289
MGS-epoch=25-lr=0.0012-batch_size=32-l2=0.0001-dropout=0.1 0.284
MGS-epoch=15-lr=0.0067-batch_size=128-l2=1e-05-dropout=0.3 0.290
MGS-epoch=25-lr=0.0023-batch_size=32-l2=0.001-dropout=0.6 0.274
MGS-epoch=25-lr=0.01-batch_size=128-l2=1e-05-dropout=0.1 0.273
MGS-epoch=20-lr=0.0034-batch_size=64-l2=0.001-dropout=0.6 0.275
MGS-epoch=10-lr=0.0067-batch_size=32-l2=1e-05-dropout=0.1 0.278
MGS-epoch=25-lr=0.0023-batch_size=20-l2=1e-05-dropout=0.3 0.288
MGS-epoch=25-lr=0.0012-batch_size=128-l2=0.001-dropout=0.2 0.258
MGS-epoch=25-lr=0.0034-batch_size=20-l2=1e-05-dropout=0.6 0.282
MGS-epoch=25-lr=0.0089-batch_size=20-l2=0.001-dropout=0.3 0.224
MGS-epoch=10-lr=0.0045-batch_size=80-l2=0.0001-dropout=0.7 0.293
MGS-epoch=10-lr=0.0045-batch_size=32-l2=0.001-dropout=0.5 0.278
MGS-epoch=15-lr=0.0078-batch_size=16-l2=1e-06-dropout=0.3 0.272
MGS-epoch=10-lr=0.0034-batch_size=16-l2=0.001-dropout=0.3 0.260
MGS-epoch=15-lr=0.0078-batch_size=16-l2=0.001-dropout=0.1 0.217
MGS-epoch=15-lr=0.0067-batch_size=32-l2=1e-05-dropout=0.1 0.269
MGS-epoch=20-lr=0.0067-batch_size=128-l2=0.001-dropout=0.2 0.274

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.396
  • Standard deviation: 0.106
  • Maximum value: 0.568
  • Minimum value: 0.173
Parameters/Metrics MRR@20
MGS-epoch=12-lr=0.0056-batch_size=32-l2=1e-05-dropout=0.2 0.478
MGS-epoch=12-lr=0.0023-batch_size=128-l2=0.001-dropout=0.2 0.391
MGS-epoch=12-lr=0.0078-batch_size=32-l2=0.0001-dropout=0.5 0.390
MGS-epoch=12-lr=0.0034-batch_size=64-l2=1e-05-dropout=0.5 0.526
MGS-epoch=12-lr=0.0078-batch_size=32-l2=0.001-dropout=0.1 0.269
MGS-epoch=12-lr=1e-04-batch_size=32-l2=0.001-dropout=0.5 0.256
MGS-epoch=12-lr=0.0056-batch_size=128-l2=0.001-dropout=0.1 0.348
MGS-epoch=12-lr=0.0023-batch_size=128-l2=0.0001-dropout=0.3 0.492
MGS-epoch=12-lr=0.0045-batch_size=32-l2=1e-05-dropout=0.5 0.488
MGS-epoch=12-lr=0.0012-batch_size=64-l2=0.001-dropout=0.3 0.369
MGS-epoch=20-lr=0.0045-batch_size=32-l2=0.0001-dropout=0.5 0.404
MGS-epoch=15-lr=1e-04-batch_size=32-l2=1e-06-dropout=0.3 0.448
MGS-epoch=10-lr=0.0067-batch_size=16-l2=0.001-dropout=0.5 0.205
MGS-epoch=10-lr=0.0067-batch_size=64-l2=0.001-dropout=0.3 0.291
MGS-epoch=15-lr=0.0012-batch_size=16-l2=0.001-dropout=0.3 0.173
MGS-epoch=20-lr=0.0023-batch_size=16-l2=1e-05-dropout=0.5 0.376
MGS-epoch=20-lr=0.0012-batch_size=128-l2=0.001-dropout=0.2 0.428
MGS-epoch=10-lr=1e-04-batch_size=16-l2=1e-06-dropout=0.2 0.381
MGS-epoch=15-lr=0.0056-batch_size=32-l2=0.0001-dropout=0.1 0.401
MGS-epoch=15-lr=0.0089-batch_size=16-l2=0.0001-dropout=0.5 0.269
MGS-epoch=15-lr=0.0067-batch_size=32-l2=0.0001-dropout=0.5 0.396
MGS-epoch=20-lr=0.0078-batch_size=16-l2=0.0001-dropout=0.5 0.317
MGS-epoch=20-lr=0.0078-batch_size=128-l2=1e-05-dropout=0.3 0.568
MGS-epoch=15-lr=1e-04-batch_size=32-l2=0.001-dropout=0.1 0.259
MGS-epoch=10-lr=0.0034-batch_size=128-l2=0.001-dropout=0.3 0.361
MGS-epoch=15-lr=0.0067-batch_size=16-l2=1e-06-dropout=0.5 0.378
MGS-epoch=20-lr=0.0012-batch_size=32-l2=0.001-dropout=0.5 0.305
MGS-epoch=10-lr=0.0078-batch_size=16-l2=1e-05-dropout=0.2 0.364
MGS-epoch=20-lr=0.0078-batch_size=16-l2=0.0001-dropout=0.2 0.325
MGS-epoch=20-lr=0.0023-batch_size=64-l2=1e-05-dropout=0.2 0.518
MGS-epoch=20-lr=1e-04-batch_size=32-l2=0.001-dropout=0.1 0.272
MGS-epoch=10-lr=0.0067-batch_size=64-l2=0.001-dropout=0.3 0.299
MGS-epoch=20-lr=0.0078-batch_size=32-l2=1e-05-dropout=0.3 0.492
MGS-epoch=15-lr=0.0056-batch_size=128-l2=1e-06-dropout=0.5 0.562
MGS-epoch=10-lr=0.0034-batch_size=32-l2=1e-05-dropout=0.5 0.468
MGS-epoch=15-lr=0.0023-batch_size=128-l2=1e-06-dropout=0.5 0.544
MGS-epoch=10-lr=0.0089-batch_size=128-l2=0.001-dropout=0.3 0.319
MGS-epoch=15-lr=0.0012-batch_size=64-l2=1e-06-dropout=0.5 0.544
MGS-epoch=15-lr=0.0056-batch_size=32-l2=1e-06-dropout=0.3 0.512
MGS-epoch=10-lr=0.0056-batch_size=128-l2=0.0001-dropout=0.3 0.479
MGS-epoch=20-lr=0.0023-batch_size=64-l2=1e-06-dropout=0.3 0.557

Hyperparameters for GNRRW

We tested the following hyperparameter space:

Parameter Ranges
Learning Rate [0.01 to 0.0001]
Batch Size [20, 32, 64, 100, 128, 200, 256]
Embedding Size [16, 32, 64, 80, 100, 128, 200]
L2 Penality [0.01,0.0003, 0.000001, 0.0005, 0.0001]
Epochs [10, 15, 20, 25, 30]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.383
  • Standard deviation: 0.010
  • Maximum value: 0.397
  • Minimum value: 0.337
Parameters/Matrics MRR@20
GNRRW-epoch=10-lr=0.0089-batch_size=200-l2=1e-05 0.3906
GNRRW-epoch=15-lr=0.0089-batch_size=200-l2=1e-05 0.3906
GNRRW-epoch=10-lr=0.0056-batch_size=200-l2=1e-05 0.3866
GNRRW-epoch=10-lr=0.0089-batch_size=32-l2=1e-05 0.3849
GNRRW-epoch=15-lr=0.0012-batch_size=20-l2=1e-05 0.3784
GNRRW-epoch=20-lr=0.0023-batch_size=200-l2=1e-05 0.3930
GNRRW-epoch=10-lr=0.0089-batch_size=20-l2=1e-05 0.3515
GNRRW-epoch=20-lr=0.01-batch_size=20-l2=1e-05 0.3367
GNRRW-epoch=10-lr=0.01-batch_size=32-l2=1e-05 0.3707
GNRRW-epoch=15-lr=1e-04-batch_size=20-l2=1e-05 0.3858
GNRRW-epoch=10-lr=0.0023-batch_size=20-l2=1e-05 0.3760
GNRRW-epoch=15-lr=0.0023-batch_size=128-l2=1e-05 0.3885
GNRRW-epoch=20-lr=0.01-batch_size=100-l2=1e-05 0.3859
GNRRW-epoch=20-lr=0.0034-batch_size=100-l2=1e-05 0.3912
GNRRW-epoch=15-lr=0.0056-batch_size=20-l2=1e-05 0.3743
GNRRW-epoch=20-lr=0.0023-batch_size=100-l2=1e-05 0.3872
GNRRW-epoch=20-lr=0.0089-batch_size=100-l2=1e-05 0.3926
GNRRW-epoch=15-lr=0.0045-batch_size=128-l2=1e-05 0.3834
GNRRW-epoch=10-lr=0.0023-batch_size=100-l2=1e-05 0.3936
GNRRW-epoch=10-lr=0.0045-batch_size=20-l2=1e-05 0.3732
GNRRW-epoch=10-lr=1e-04-batch_size=100-l2=1e-05 0.3834
GNRRW-epoch=10-lr=0.0056-batch_size=128-l2=1e-05 0.3863
GNRRW-epoch=15-lr=0.0034-batch_size=32-l2=1e-05 0.3847
GNRRW-epoch=20-lr=0.0056-batch_size=100-l2=1e-05 0.3817
GNRRW-epoch=10-lr=0.0034-batch_size=32-l2=1e-05 0.3849
GNRRW-epoch=20-lr=0.0089-batch_size=32-l2=1e-05 0.3780
GNRRW-epoch=15-lr=0.01-batch_size=128-l2=1e-05 0.3941
GNRRW-epoch=20-lr=1e-04-batch_size=100-l2=1e-05 0.3812
GNRRW-epoch=15-lr=0.0089-batch_size=128-l2=1e-05 0.3913
GNRRW-epoch=15-lr=0.0089-batch_size=100-l2=1e-05 0.3868
GNRRW-epoch=15-lr=0.0067-batch_size=100-l2=1e-05 0.3904
GNRRW-epoch=10-lr=0.0045-batch_size=32-l2=1e-05 0.3785
GNRRW-epoch=10-lr=0.0078-batch_size=20-l2=1e-05 0.3648
GNRRW-epoch=20-lr=0.0045-batch_size=200-l2=1e-05 0.3832
GNRRW-epoch=10-lr=0.0034-batch_size=128-l2=1e-05 0.3929
GNRRW-epoch=15-lr=0.0012-batch_size=32-l2=1e-05 0.3873
GNRRW-epoch=20-lr=0.0056-batch_size=32-l2=1e-05 0.3856
GNRRW-epoch=20-lr=0.0067-batch_size=20-l2=1e-05 0.3699
GNRRW-epoch=10-lr=0.0023-batch_size=128-l2=1e-05 0.3971
GNRRW-epoch=10-lr=0.0078-batch_size=32-l2=1e-05 0.3840
GNRRW-epoch=15-lr=0.0056-batch_size=100-l2=1e-05 0.3830
GNRRW-epoch=15-lr=1e-04-batch_size=100-l2=1e-05 0.3771
GNRRW-epoch=15-lr=0.0089-batch_size=128-l2=1e-05 0.3891
GNRRW-epoch=10-lr=0.0056-batch_size=128-l2=1e-05 0.3879
GNRRW-epoch=15-lr=0.0023-batch_size=20-l2=1e-05 0.3747
GNRRW-epoch=10-lr=0.01-batch_size=100-l2=1e-05 0.3937
GNRRW-epoch=15-lr=0.0034-batch_size=200-l2=1e-05 0.3922
GNRRW-epoch=15-lr=0.0034-batch_size=128-l2=1e-05 0.3884
GNRRW-epoch=20-lr=0.0067-batch_size=100-l2=1e-05 0.3857

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.215
  • Standard deviation: 0.037
  • Maximum value: 0.257
  • Minimum value: 0.059
Parameters/Matrics MRR@20
GNRRW-epoch=25-lr=0.00667-batch_size=256-embedding_size=128-l2=1e-05 0.190
GNRRW-epoch=15-lr=0.00778-batch_size=128-embedding_size=80-l2=1e-05 0.239
GNRRW-epoch=25-lr=0.00889-batch_size=256-embedding_size=128-l2=1e-05 0.202
GNRRW-epoch=30-lr=0.00889-batch_size=32-embedding_size=80-l2=1e-05 0.246
GNRRW-epoch=15-lr=0.00445-batch_size=64-embedding_size=200-l2=1e-05 0.203
GNRRW-epoch=25-lr=0.00889-batch_size=256-embedding_size=128-l2=3e-05 0.207
GNRRW-epoch=15-lr=0.00556-batch_size=256-embedding_size=200-l2=3e-05 0.207
GNRRW-epoch=30-lr=0.00112-batch_size=128-embedding_size=200-l2=3e-05 0.226
GNRRW-epoch=25-lr=0.00667-batch_size=100-embedding_size=200-l2=1e-05 0.215
GNRRW-epoch=15-lr=0.00556-batch_size=64-embedding_size=100-l2=1e-05 0.227
GNRRW-epoch=30-lr=0.00889-batch_size=128-embedding_size=200-l2=3e-05 0.225
GNRRW-epoch=15-lr=0.01-batch_size=256-embedding_size=128-l2=3e-05 0.225
GNRRW-epoch=30-lr=0.00778-batch_size=32-embedding_size=80-l2=1e-05 0.216
GNRRW-epoch=25-lr=0.00334-batch_size=64-embedding_size=80-l2=3e-05 0.223
GNRRW-epoch=25-lr=1e-05-batch_size=256-embedding_size=80-l2=3e-05 0.059
GNRRW-epoch=15-lr=0.00556-batch_size=100-embedding_size=128-l2=3e-05 0.225
GNRRW-epoch=30-lr=0.00112-batch_size=64-embedding_size=200-l2=1e-05 0.241
GNRRW-epoch=15-lr=0.01-batch_size=200-embedding_size=100-l2=3e-05 0.216
GNRRW-epoch=15-lr=0.00445-batch_size=256-embedding_size=80-l2=1e-05 0.257
GNRRW-epoch=30-lr=0.00223-batch_size=100-embedding_size=200-l2=1e-05 0.204
GNRRW-epoch=30-lr=0.00334-batch_size=200-embedding_size=200-l2=1e-05 0.222
GNRRW-epoch=25-lr=0.00556-batch_size=64-embedding_size=80-l2=1e-05 0.211
GNRRW-epoch=20-lr=0.00445-batch_size=128-embedding_size=80-l2=3e-05 0.238
GNRRW-epoch=30-lr=0.00667-batch_size=64-embedding_size=80-l2=1e-05 0.231
GNRRW-epoch=30-lr=0.00556-batch_size=100-embedding_size=200-l2=1e-05 0.195
GNRRW-epoch=25-lr=0.00667-batch_size=256-embedding_size=100-l2=3e-05 0.226
GNRRW-epoch=15-lr=0.01-batch_size=64-embedding_size=100-l2=3e-05 0.241
GNRRW-epoch=30-lr=0.00667-batch_size=64-embedding_size=80-l2=3e-05 0.251
GNRRW-epoch=15-lr=0.00334-batch_size=100-embedding_size=200-l2=1e-05 0.218
GNRRW-epoch=25-lr=0.00445-batch_size=256-embedding_size=100-l2=1e-05 0.255
GNRRW-epoch=15-lr=0.00445-batch_size=100-embedding_size=200-l2=3e-05 0.205
GNRRW-epoch=15-lr=0.00889-batch_size=256-embedding_size=100-l2=1e-05 0.222
GNRRW-epoch=25-lr=1e-05-batch_size=128-embedding_size=100-l2=1e-05 0.071
GNRRW-epoch=30-lr=0.00445-batch_size=200-embedding_size=128-l2=1e-05 0.226
GNRRW-epoch=20-lr=1e-05-batch_size=64-embedding_size=80-l2=1e-05 0.151
GNRRW-epoch=15-lr=0.00112-batch_size=200-embedding_size=200-l2=1e-05 0.233
GNRRW-epoch=30-lr=0.00445-batch_size=100-embedding_size=200-l2=3e-05 0.205
GNRRW-epoch=25-lr=0.00445-batch_size=128-embedding_size=80-l2=1e-05 0.233
GNRRW-epoch=30-lr=0.00778-batch_size=64-embedding_size=200-l2=1e-05 0.224
GNRRW-epoch=15-lr=0.01-batch_size=256-embedding_size=100-l2=1e-05 0.233
GNRRW-epoch=20-lr=0.00667-batch_size=128-embedding_size=100-l2=3e-05 0.233
GNRRW-epoch=30-lr=0.00778-batch_size=100-embedding_size=200-l2=3e-05 0.215
GNRRW-epoch=20-lr=1e-05-batch_size=32-embedding_size=100-l2=1e-05 0.165
GNRRW-epoch=15-lr=0.00334-batch_size=32-embedding_size=80-l2=3e-05 0.243
GNRRW-epoch=30-lr=0.00223-batch_size=128-embedding_size=200-l2=1e-05 0.234
GNRRW-epoch=20-lr=0.00667-batch_size=256-embedding_size=200-l2=1e-05 0.203
GNRRW-epoch=25-lr=0.00667-batch_size=32-embedding_size=200-l2=1e-05 0.231
GNRRW-epoch=20-lr=0.00334-batch_size=32-embedding_size=100-l2=3e-05 0.212
GNRRW-epoch=25-lr=0.00556-batch_size=256-embedding_size=128-l2=1e-05 0.208
GNRRW-epoch=30-lr=0.00445-batch_size=128-embedding_size=80-l2=1e-05 0.233

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.493
  • Standard deviation: 0.034
  • Maximum value: 0.543
  • Minimum value: 0.413
Parameters/Matrics MRR@20
GNRRW-epoch=15-lr=1e-04-batch_size=128-embedding_size=128-l2=0.01 0.503
GNRRW-epoch=20-lr=1e-04-batch_size=32-embedding_size=32-l2=1e-06 0.493
GNRRW-epoch=15-lr=0.0023-batch_size=20-embedding_size=16-l2=1e-06 0.448
GNRRW-epoch=10-lr=1e-04-batch_size=128-embedding_size=128-l2=0.01 0.504
GNRRW-epoch=10-lr=0.0012-batch_size=20-embedding_size=32-l2=0.0001 0.488
GNRRW-epoch=15-lr=0.0067-batch_size=32-embedding_size=32-l2=0.0001 0.478
GNRRW-epoch=10-lr=0.0012-batch_size=200-embedding_size=128-l2=0.0001 0.547
GNRRW-epoch=20-lr=1e-04-batch_size=200-embedding_size=200-l2=0.0001 0.590
GNRRW-epoch=10-lr=1e-04-batch_size=32-embedding_size=16-l2=1e-05 0.443
GNRRW-epoch=15-lr=1e-04-batch_size=200-embedding_size=128-l2=0.0001 0.531
GNRRW-epoch=20-lr=0.0045-batch_size=32-embedding_size=32-l2=0.01 0.454
GNRRW-epoch=5-lr=0.01-batch_size=128-embedding_size=64-l2=1e-06 0.525
GNRRW-epoch=10-lr=1e-04-batch_size=128-embedding_size=32-l2=0.0001 0.532
GNRRW-epoch=20-lr=0.0089-batch_size=20-embedding_size=128-l2=0.0001 0.462
GNRRW-epoch=10-lr=0.0056-batch_size=128-embedding_size=16-l2=0.01 0.429
GNRRW-epoch=15-lr=1e-04-batch_size=200-embedding_size=128-l2=0.0001 0.534
GNRRW-epoch=20-lr=0.0078-batch_size=100-embedding_size=16-l2=0.0001 0.465
GNRRW-epoch=15-lr=0.01-batch_size=200-embedding_size=128-l2=1e-06 0.534
GNRRW-epoch=20-lr=0.0056-batch_size=200-embedding_size=128-l2=1e-05 0.518
GNRRW-epoch=15-lr=0.0034-batch_size=100-embedding_size=16-l2=0.01 0.435
GNRRW-epoch=10-lr=0.0012-batch_size=32-embedding_size=32-l2=1e-06 0.512
GNRRW-epoch=10-lr=0.0034-batch_size=128-embedding_size=32-l2=0.0001 0.507
GNRRW-epoch=10-lr=0.01-batch_size=200-embedding_size=16-l2=0.0001 0.482
GNRRW-epoch=15-lr=0.0023-batch_size=32-embedding_size=16-l2=0.0001 0.460
GNRRW-epoch=10-lr=0.0012-batch_size=32-embedding_size=16-l2=0.0001 0.479
GNRRW-epoch=10-lr=0.01-batch_size=32-embedding_size=128-l2=0.01 0.442
GNRRW-epoch=10-lr=0.0089-batch_size=20-embedding_size=16-l2=1e-05 0.455
GNRRW-epoch=15-lr=0.01-batch_size=128-embedding_size=64-l2=1e-06 0.526
GNRRW-epoch=10-lr=0.0067-batch_size=128-embedding_size=16-l2=1e-05 0.497
GNRRW-epoch=15-lr=0.0078-batch_size=20-embedding_size=200-l2=1e-06 0.436
GNRRW-epoch=15-lr=0.0078-batch_size=200-embedding_size=32-l2=1e-05 0.514
GNRRW-epoch=10-lr=0.0012-batch_size=100-embedding_size=128-l2=0.01 0.482
GNRRW-epoch=15-lr=0.0056-batch_size=200-embedding_size=32-l2=0.01 0.460
GNRRW-epoch=10-lr=1e-04-batch_size=128-embedding_size=128-l2=1e-05 0.516
GNRRW-epoch=20-lr=0.0045-batch_size=100-embedding_size=32-l2=0.01 0.453
GNRRW-epoch=15-lr=0.0012-batch_size=128-embedding_size=16-l2=1e-06 0.543
GNRRW-epoch=10-lr=0.0078-batch_size=200-embedding_size=32-l2=0.01 0.468
GNRRW-epoch=20-lr=0.0067-batch_size=128-embedding_size=200-l2=0.0001 0.495
GNRRW-epoch=15-lr=0.0078-batch_size=32-embedding_size=128-l2=1e-06 0.488
GNRRW-epoch=10-lr=0.0089-batch_size=128-embedding_size=200-l2=1e-06 0.510
GNRRW-epoch=15-lr=1e-04-batch_size=20-embedding_size=16-l2=0.0001 0.413
GNRRW-epoch=20-lr=0.0089-batch_size=200-embedding_size=64-l2=0.01 0.463
GNRRW-epoch=15-lr=0.0078-batch_size=200-embedding_size=64-l2=0.0001 0.497
GNRRW-epoch=20-lr=0.01-batch_size=100-embedding_size=16-l2=0.0001 0.459
GNRRW-epoch=10-lr=0.0045-batch_size=128-embedding_size=200-l2=0.0001 0.507
GNRRW-epoch=20-lr=0.0089-batch_size=200-embedding_size=200-l2=0.0001 0.491
GNRRW-epoch=15-lr=0.0089-batch_size=128-embedding_size=16-l2=1e-06 0.526
GNRRW-epoch=20-lr=0.0089-batch_size=100-embedding_size=200-l2=0.01 0.450
GNRRW-epoch=10-lr=1e-04-batch_size=100-embedding_size=32-l2=1e-05 0.530
GNRRW-epoch=15-lr=1e-04-batch_size=100-embedding_size=128-l2=1e-06 0.524
GNRRW-epoch=10-lr=0.0045-batch_size=200-embedding_size=16-l2=1e-06 0.543
GNRRW-epoch=15-lr=1e-04-batch_size=128-embedding_size=64-l2=1e-06 0.527

Hyperparameters for TAGNN

We tested the following hyperparameter space:

Parameter Ranges
Learning Rate [0.01 to 0.0001]
Batch Size [20, 32, 100, 128, 200]
Embedding_size [50, 100, 150]
L2 Penality [0.00001, 0.0001]
Epoch [10, 15, 20, 20, 25]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.261
  • Standard deviation: 0.070
  • Maximum value: 0.351
  • Minimum value: 0.063
Parameters/Metrics MRR@20
TAGNN-epoch=10-lr=0.005-batch_size=32-embedding_size=150-l2=0.0001 0.126
TAGNN-epoch=15-lr=0.0002-batch_size=100-embedding_size=100-l2=1e-05 0.315
TAGNN-epoch=10-lr=0.008-batch_size=100-embedding_size=100-l2=1e-05 0.279
TAGNN-epoch=10-lr=0.007-batch_size=128-embedding_size=150-l2=0.0001 0.211
TAGNN-epoch=10-lr=0.003-batch_size=100-embedding_size=100-l2=1e-05 0.317
TAGNN-epoch=15-lr=0.0009-batch_size=32-embedding_size=150-l2=0.0001 0.229
TAGNN-epoch=10-lr=0.007-batch_size=32-embedding_size=150-l2=0.0001 0.156
TAGNN-epoch=15-lr=0.0003-batch_size=20-embedding_size=100-l2=1e-05 0.317
TAGNN-epoch=15-lr=0.001-batch_size=20-embedding_size=100-l2=1e-05 0.311
TAGNN-epoch=10-lr=0.0008-batch_size=32-embedding_size=150-l2=1e-05 0.282
TAGNN-epoch=15-lr=0.006-batch_size=32-embedding_size=100-l2=0.0001 0.130
TAGNN-epoch=20-lr=0.005-batch_size=200-embedding_size=100-l2=0.0001 0.241
TAGNN-epoch=20-lr=0.0003-batch_size=128-embedding_size=100-l2=1e-05 0.321
TAGNN-epoch=20-lr=0.009-batch_size=200-embedding_size=100-l2=0.0001 0.180
TAGNN-epoch=15-lr=0.0008-batch_size=20-embedding_size=100-l2=0.0001 0.231
TAGNN-epoch=20-lr=0.009-batch_size=20-embedding_size=100-l2=1e-05 0.229
TAGNN-epoch=15-lr=0.01-batch_size=100-embedding_size=150-l2=0.0001 0.180
TAGNN-epoch=10-lr=0.002-batch_size=128-embedding_size=150-l2=0.0001 0.261
TAGNN-epoch=15-lr=0.003-batch_size=128-embedding_size=100-l2=0.0001 0.234
TAGNN-epoch=20-lr=0.004-batch_size=20-embedding_size=150-l2=1e-05 0.260
TAGNN-epoch=15-Lr=0.01-batch_size=100-embedding_size=100-l2=1e-05 0.275
TAGNN-epoch=20-lr=0.0006-batch_size=100-embedding_size=150-l2=0.0001 0.251
TAGNN-epoch=15-lr=0.0008-batch_size=128-embedding_size=100-l2=1e-05 0.333
TAGNN-epoch=15-lr=0.009-batch_size=100-embedding_size=150-l2=1e-05 0.267
TAGNN-epoch=10-lr=0.0009-batch_size=128-embedding_size=100-l2=1e-05 0.334
TAGNN-epoch=15-lr=0.007-batch_size=32-embedding_size=100-l2=0.0001 0.128
TAGNN-epoch=10-lr=0.0005-batch_size=20-embedding_size=100-l2=1e-05 0.309
TAGNN-epoch=15-lr=0.0002-batch_size=100-embedding_size=150-l2=1e-05 0.313
TAGNN-epoch=10-lr=0.006-batch_size=32-embedding_size=150-l2=0.0001 0.156
TAGNN-epoch=20-lr=0.001-batch_size=20-embedding_size=150-l2=1e-05 0.292
TAGNN-epoch=25-lr=0.0007-batch_size=100-embedding_size=100-l2=1e-05 0.351
TAGNN-epoch=10-lr=0.0004-batch_size=100-embedding_size=100-l2=1e-05 0.322
TAGNN-epoch=15-lr=0.01-batch_size=32-embedding_size=150-l2=1e-05 0.215
TAGNN-epoch=10-lr=1e-04-batch_size=32-embedding_size=150-l2=0.0001 0.252
TAGNN-epoch=15-lr=0.0008-batch_size=100-embedding_size=150-l2=1e-05 0.336
TAGNN-epoch=20-lr=1e-04-batch_size=100-embedding_size=150-l2=1e-05 0.317
TAGNN-epoch=10-lr=0.0005-batch_size=128-embedding_size=100-l2=1e-05 0.323
TAGNN-epoch=15-lr=0.0007-batch_size=128-embedding_size=150-l2=1e-05 0.319
TAGNN-epoch=20-lr=0.0006-batch_size=200-embedding_size=100-l2=0.0001 0.307
TAGNN-epoch=15-lr=0.01-batch_size=20-embedding_size=150-l2=0.0001 0.063
TAGNN-epoch=20-lr=0.008-batch_size=20-embedding_size=100-l2=0.0001 0.137
TAGNN-epoch=15-lr=0.001-batch_size=100-embedding_size=150-l2=1e-05 0.317
TAGNN-epoch=10-lr=0.005-batch_size=100-embedding_size=150-l2=1e-05 0.309
TAGNN-epoch=15-lr=0.001-batch_size=32-embedding_size=100-l2=0.0001 0.249
TAGNN-epoch=10-lr=0.0002-batch_size=32-embedding_size=150-l2=1e-05 0.333
TAGNN-epoch=15-lr=0.0007-batch_size=20-embedding_size=100-l2=1e-05 0.331
TAGNN-epoch=25-lr=0.001-batch_size=32-embedding_size=150-l2=1e-05 0.299
TAGNN-epoch=15-lr=0.005-batch_size=100-embedding_size=150-l2=0.0001 0.209
TAGNN-epoch=20-lr=1e-04-batch_size=100-embedding_size=100-l2=1e-05 0.320

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.285
  • Standard deviation: 0.028
  • Maximum value: 0.322
  • Minimum value: 0.216
Parameters/Metrics MRR@20
TAGNN-epoch=20-Lr=0.009-batch_size=32-embedding_size=100-l2=0.0001 0.235
TAGNN-epoch=20-lr=0.008-batch_size=128-embedding_size=150-l2=0.0001 0.256
TAGNN-epoch=20-lr=0.004-batch_size=128-embedding_size=150-l2=0.0001 0.294
TAGNN-epoch=20-lr=1e-04-batch_size=128-embedding_size=150-l2=1e-05 0.307
TAGNN-epoch=10-lr=0.01-batch_size=100-embedding_size=100-l2=0.0001 0.282
TAGNN-epoch=10-lr=0.0005-batch_size=32-embedding_size=100-l2=0.0001 0.308
TAGNN-epoch=15-lr=0.002-batch_size=32-embedding_size=150-l2=0.0001 0.274
TAGNN-epoch=25-lr=0.007-batch_size=32-embedding_size=100-l2=1e-05 0.278
TAGNN-epoch=15-lr=0.005-batch_size=20-embedding_size=150-l2=0.0001 0.231
TAGNN-epoch=25-lr=0.0004-batch_size=20-embedding_size=100-l2=1e-05 0.300
TAGNN-epoch=10-lr=0.0002-batch_size=100-embedding_size=150-l2=1e-05 0.315
TAGNN-epoch=15-lr=0.0003-batch_size=20-embedding_size=100-l2=0.0001 0.281
TAGNN-epoch=10-lr=0.0004-batch_size=20-embedding_size=100-l2=1e-05 0.313
TAGNN-epoch=15-lr=0.001-batch_size=128-embedding_size=150-l2=0.0001 0.322
TAGNN-epoch=25-lr=0.001-batch_size=100-embedding_size=100-l2=1e-05 0.312
TAGNN-epoch=15-lr=0.001-batch_size=128-embedding_size=150-l2=1e-05 0.320
TAGNN-epoch=25-lr=0.008-batch_size=32-embedding_size=100-l2=0.0001 0.254
TAGNN-epoch=10-lr=0.01-batch_size=20-embedding_size=100-l2=1e-05 0.239
TAGNN-epoch=20-lr=0.002-batch_size=128-embedding_size=150-l2=1e-05 0.310
TAGNN-epoch=10-lr=0.001-batch_size=128-embedding_size=100-l2=0.0001 0.303
TAGNN-epoch=15-lr=0.0008-batch_size=20-embedding_size=100-l2=0.0001 0.280
TAGNN-epoch=25-lr=0.009-batch_size=32-embedding_size=150-l2=1e-05 0.240
TAGNN-epoch=10-lr=0.0004-batch_size=32-embedding_size=100-l2=0.0001 0.293
TAGNN-epoch=25-lr=0.001-batch_size=128-embedding_size=100-l2=1e-05 0.321
TAGNN-epoch=10-lr=0.0007-batch_size=100-embedding_size=100-l2=0.0001 0.305
TAGNN-epoch=15-lr=0.008-batch_size=128-embedding_size=150-l2=1e-05 0.269
TAGNN-epoch=10-lr=0.0003-batch_size=100-embedding_size=100-l2=0.0001 0.300
TAGNN-epoch=20-lr=1e-04-batch_size=128-embedding_size=100-l2=1e-05 0.293
TAGNN-epoch=15-lr=0.0005-batch_size=100-embedding_size=100-l2=0.0001 0.302
TAGNN-epoch=20-lr=0.005-batch_size=128-embedding_size=100-l2=1e-05 0.310
TAGNN-epoch=20-lr=0.007-batch_size=128-embedding_size=150-l2=1e-05 0.272
TAGNN-epoch=20-lr=0.005-batch_size=128-embedding_size=150-l2=1e-05 0.306
TAGNN-epoch=15-lr=0.001-batch_size=32-embedding_size=100-l2=0.0001 0.297
TAGNN-epoch=20-lr=1e-04-batch_size=200-embedding_size=150-l2=0.0001 0.275
TAGNN-epoch=25-lr=0.006-batch_size=20-embedding_size=150-l2=0.0001 0.253
TAGNN-epoch=15-lr=0.003-batch_size=20-embedding_size=100-l2=0.0001 0.267
TAGNN-epoch=25-lr=0.009-batch_size=32-embedding_size=150-l2=0.0001 0.232
TAGNN-epoch=10-lr=0.0002-batch_size=128-embedding_size=150-l2=0.0001 0.282
TAGNN-epoch=15-lr=0.009-batch_size=20-embedding_size=100-l2=0.0001 0.216
TAGNN-epoch=15-lr=0.0006-batch_size=20-embedding_size=100-l2=1e-05 0.309
TAGNN-epoch=20-lr=0.0007-batch_size=100-embedding_size=100-l2=1e-05 0.307
TAGNN-epoch=15-lr=0.007-batch_size=20-embedding_size=100-l2=0.0001 0.239
TAGNN-epoch=20-lr=0.004-batch_size=128-embedding_size=100-l2=0.0001 0.308
TAGNN-epoch=15-lr=0.008-batch_size=200-embedding_size=100-l2=0.0001 0.285
TAGNN-epoch=10-lr=0.01-batch_size=20-embedding_size=100-l2=1e-05 0.234
TAGNN-epoch=15-lr=0.01-batch_size=200-embedding_size=100-l2=1e-05 0.294
TAGNN-epoch=25-lr=0.0005-batch_size=100-embedding_size=150-l2=1e-05 0.307
TAGNN-epoch=20-lr=0.0004-batch_size=100-embedding_size=150-l2=1e-05 0.295
TAGNN-epoch=10-lr=0.003-batch_size=128-embedding_size=100-l2=1e-05 0.316

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.381
  • Standard deviation: 0.085
  • Maximum value: 0.522
  • Minimum value: 0.193
Parameters/Metrics MRR@20
TAGNN-epoch=20-lr=0.0003-batch_size=20-embedding_size=150-l2=0.0001 0.257
TAGNN-epoch=20-lr=0.002-batch_size=128-embedding_size=100-l2=0.0001 0.380
TAGNN-epoch=20-lr=0.005-batch_size=100-embedding_size=100-l2=1e-05 0.418
TAGNN-epoch=20-lr=0.0004-batch_size=200-embedding_size=100-l2=0.0001 0.382
TAGNN-epoch=20-lr=0.005-batch_size=100-embedding_size=150-l2=1e-05 0.402
TAGNN-epoch=20-lr=0.005-batch_size=100-embedding_size=100-l2=1e-05 0.406
TAGNN-epoch=20-lr=0.008-batch_size=200-embedding_size=100-l2=1e-05 0.400
TAGNN-epoch=20-lr=0.002-batch_size=32-embedding_size=100-l2=0.0001 0.312
TAGNN-epoch=25-lr=0.008-batch_size=128-embedding_size=100-l2=1e-05 0.380
TAGNN-epoch=25-lr=0.003-batch_size=32-embedding_size=130-l2=0.0001 0.263
TAGNN-epoch=25-lr=0.003-batch_size=128-embedding_size=80-l2=0.0001 0.337
TAGNN-epoch=15-lr=0.0007-batch_size=32-embedding_size=100-l2=5e-05 0.388
TAGNN-epoch=15-lr=0.0006-batch_size=20-embedding_size=100-l2=5e-05 0.340
TAGNN-epoch=15-lr=0.0007-batch_size=100-embedding_size=100-l2=0.0001 0.388
TAGNN-epoch=20-lr=0.0004-batch_size=20-embedding_size=150-l2=3e-05 0.401
TAGNN-epoch=10-lr=0.0005-batch_size=32-embedding_size=150-l2=3e-05 0.456
TAGNN-epoch=15-lr=0.0008-batch_size=20-embedding_size=150-l2=5e-05 0.326
TAGNN-epoch=20-lr=0.001-batch_size=32-embedding_size=150-l2=0.0001 0.292
TAGNN-epoch=10-lr=0.0008-batch_size=20-embedding_size=150-l2=1e-05 0.471
TAGNN-epoch=15-lr=0.007-batch_size=20-embedding_size=100-l2=5e-05 0.193
TAGNN-epoch=15-lr=0.0005-batch_size=32-embedding_size=150-l2=0.0001 0.295
TAGNN-epoch=20-lr=0.0007-batch_size=32-embedding_size=100-l2=1e-05 0.481
TAGNN-epoch=15-lr=0.0007-batch_size=32-embedding_size=100-l2=5e-05 0.388
TAGNN-epoch=10-lr=0.0006-batch_size=128-embedding_size=150-l2=1e-05 0.510
TAGNN-epoch=20-lr=0.001-batch_size=100-embedding_size=150-l2=1e-05 0.501
TAGNN-epoch=10-lr=0.0002-batch_size=100-embedding_size=100-l2=1e-05 0.522
TAGNN-epoch=10-lr=0.001-batch_size=32-embedding_size=100-l2=1e-05 0.450
TAGNN-epoch=25-lr=0.0006-batch_size=32-embedding_size=100-l2=0.0001 0.299
TAGNN-epoch=20-lr=0.001-batch_size=200-embedding_size=100-l2=1e-05 0.512
TAGNN-epoch=15-lr=0.0002-batch_size=20-embedding_size=150-l2=0.0001 0.270

Hyperparameters for COTREC

We tested the following hyperparameter space:

Parameter Ranges
Learning Rate [0.01 to 0.0001]
Batch Size [20, 32, 64, 100, 128, 256, 512, 50]
Embedding Size [20, 50, 64, 100, 120, 200]
L2 Penality [0.00001, 0.0001]
Dropout [0, 0.1, 0.2, 0.4, 0.5, 0.6]
Epoch [10, 15, 20]


Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.361
  • Standard deviation: 0.048
  • Maximum value: 0.385
  • Minimum value: 0.145
Parameters/Metrics MRR@20
COTREC-epoch:15-lr=0.007-batch_size=64-embedding_size:100-l2=0.0001 0.373
COTREC-epoch=20-lr=0.003-batch_size=200-embedding_size=20-L2=0.0001 0.359
COTREC-epoch=10-lr=0.003-batch_size=200-embedding_size=50-l2=0.0001 0.372
COTREC-epoch=15-lr=0.009-batch_size=128-embedding_size=50-l2=1e-05 0.381
COTREC-epoch=10-lr=0.0008-batch_size=128-embedding_size=20-l2=0.0001 0.346
COTREC-epoch=15-lr=0.0003-batch_size=64-embedding_size=20-l2=1e-05 0.347
COTREC-epoch=10-lr=0.002-batch_size=200-embedding_size=20-l2=1e-05 0.353
COTREC-epoch=15-lr=0.0004-batch_size=128-embedding_size=20-l2=0.0001 0.346
COTREC-epoch=10-lr=0.0001-batch_size=64-embedding_size=200-l2=1e-05; 0.145
COTREC-epoch=10-lr=0.001-batch_size=64-embedding_size=200-l2=1e-05 0.384
COTREC-epoch=15-lr=0.0002-batch_size=200-embedding_size=100-l2=0.000 0.375
COTREC-epoch=15-lr=0.003-batch_size=64-embedding_size=50-l2=1e-05 0.379
COTREC-epoch=10-lr=0.009-batch_size=64-embedding_size=100-l2=0.0001 0.378
COTREC-epoch=20-lr=0.001-batch_size=128-embedding_size=100-l2=0.0001 0.378
COTREC-epoch=20-lr=0.003-batch_size=200-embedding_size=100-l2=0.0001 0.380
COTREC-epoch=20-lr=0.0007-batch_size=256-embedding_size=128-l2=0.0003 0.380
COTREC-epoch=10-lr=0.0004-batch_size=100-embedding_size=64-l2=0.0003 0.369
COTREC-epoch=20-lr=0.009-batch_size=80-embedding_size=50-l2=1e-05 0.382
COTREC-epoch=10-lr=0.007-batch_size=64-embedding_size=64-l2=0.0003 0.381
COTREC-epoch=15-lr=0.0005-batch_size=256-embedding_size=64-l2=1e-05 0.369
COTREC-epoch=20-lr=0.002-batch_size=128-embedding_size=80-l2=4e-05 0.373
COTREC-epoch=20-lr=0.0009-batch_size=50-embedding_size=64-l2=0.0003 0.385
COTREC-epoch=15-lr=0.007-batch_size=128-embedding_size=64-l2=0.0003 0.381

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.277
  • Standard deviation: 0.003
  • Maximum value: 0.284
  • Minimum value: 0.268
Parameters/Metrics MRR@20
COTREC-epoch=20-lr=0.005-batch_size=50-embedding_size=50-l2=4e-05 0.275
COTREC-epoch=10-lr=0.004-batch_size=50-embedding_size=64-l2=4e-05 0.273
COTREC-epoch=15-lr=0.005-batch_size=50-embedding_size=100-l2=0.0003 0.274
COTREC-epoch=20-lr=0.0009-batch_size=80-embedding_size=128-l2=0.0003 0.276
COTREC-epoch=20-lr=0.003-batch_size=64-embedding_size=128-l2=0.0003 0.278
COTREC-epoch=10-lr=0.0007-batch_size=256-embedding_size=100-l2=0.0003 0.279
COTREC-epoch=10-lr=1e-04-batch_size=80-embedding_size=50-l2=0.0003 0.268
COTREC-epoch=20-lr=0.003-batch_size=50-embedding_size=80-l2=4e-05 0.283
COTREC-epoch=15-lr=0.0002-batch_size=32-embedding_size=128-l2=1e-05 0.277
COTREC-epoch=10-lr=0.004-batch_size=80-embedding_size=64-l2=1e-05 0.274
COTREC-epoch=10-lr=0.008-batch_size=256-embedding_size=100-l2=0.0003 0.274
COTREC-epoch=15-lr=0.001-batch_size=80-embedding_size=50-l2=0.0001 0.275
COTREC-epoch=15-lr=0.001-batch_size=50-embedding_size=64-l2=0.0001 0.281
COTREC-epoch=15-lr=0.01-batch_size=256-embedding_size=128-l2=0.0003 0.284
COTREC-epoch=10-lr=0.008-batch_size=100-embedding_size=128-l2=0.0003 0.278
COTREC-epoch=15-lr=0.001-batch_size=80-embedding_size=64-l2=4e-05 0.276
COTREC-epoch=15-lr=0.01-batch_size=50-embedding_size=128-l2=1e-05 0.274
COTREC-epoch=15-lr=0.0008-batch_size=80-embedding_size=100-l2=0.0001 0.281
COTREC-epoch=15-lr=0.0003-batch_size=64-embedding_size=80-l2=1e-05 0.281
COTREC-epoch=15-lr=0.005-batch_size=256-embedding_size=80-l2=1e-05 0.275
COTREC-epoch=20-lr=0.008-batch_size=100-embedding_size=80-l2=0.0001 0.278
COTREC-epoch=15-lr=0.0006-batch_size=80-embedding_size=80-l2=1e-05 0.280
COTREC-epoch=10-lr=1e-04-batch_size=128-embedding_size=128-l2=1e-05 0.276
COTREC-epoch=15-lr=0.0008-batch_size=32-embedding_size=80-l2=4e-05 0.279
COTREC-epoch=20-lr=0.0008-batch_size=80-embedding_size=64-l2=0.0003 0.281

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.514
  • Standard deviation: 0.015
  • Maximum value: 0.535
  • Minimum value: 0.471
Parameters/Metrics MRR@20
COTREC-epoch=15-lr=0.005-batch_size=256-embedding_size=120-l2=0.0001 0.523
COTREC-epoch=15-lr=0.0007-batch_size=256-embedding_size=150-l2=0.0003 0.521
COTREC-epoch=15-lr=0.0006-batch_size=512-embedding_size=200-l2=1e-05 0.520
COTREC-epoch=15-lr=0.005-batch_size=256-embedding_size=200-l2=0.0003 0.522
COTREC-epoch=15-lr=1e-04-batch_size=256-embedding_size=100-l2=1e-05 0.498
COTREC-epoch=15-lr=0.0007-batch_size=128-embedding_size=100-l2=0.0003 0.521
COTREC-epoch=15-lr=0.0005-batch_size=64-embedding_size=150-l2=0.0003 0.526
COTREC-epoch=15-lr=0.01-batch_size=128-embedding_size=100-l2=0.0003 0.514
COTREC-epoch=15-lr=0.0002-batch_size=256-embedding_size=200-l2=0.0003 0.514
COTREC-epoch=15-lr=0.01-batch_size=256-embedding_size=100-l2=1e-05 0.526
COTREC-epoch=20-lr=0.006-batch_size=20-embedding_size=80-l2=0.0001 0.495
COTREC-epoch=20-lr=0.001-batch_size=80-embedding_size=80-l2=0.0003 0.517
COTREC-epoch=20-lr=0.003-batch_size=100-embedding_size=80-l2=0.0001 0.535
COTREC-epoch=20-lr=0.0002-batch_size=100-embedding_size=50-l2=0.0001 0.507
COTREC-epoch=20-lr=0.001-batch_size=50-embedding_size=20-l2=0.0003 0.487
COTREC-epoch=20-lr=0.0002-batch_size=100-embedding_size=20-l2=1e-05 0.471
COTREC-epoch=20-lr=0.004-batch_size=80-embedding_size=50-l2=0.003 0.525
COTREC-epoch=20-lr=0.01-batch_size=20-embedding_size=100-l2=0.003 0.508
COTREC-epoch=20-lr=0.009-batch_size=100-embedding_size=20-l2=0.0001 0.484
COTREC-epoch=20-lr=0.001-batch_size=50-embedding_size=50-l2=1e-05 0.522
COTREC-epoch=10-lr=0.005-batch_size=128-embedding_size=64-l2=1e-05 0.515
COTREC-epoch=20-lr=0.0009-batch_size=80-embedding_size=80-l2=0.0003 0.523
COTREC-epoch=20-lr=0.0009-batch_size=64-embedding_size=64-l2=1e-05 0.526
COTREC-epoch=10-lr=0.007-batch_size=256-embedding_size=80-l2=0.0001 0.520
COTREC-epoch=20-lr=0.004-batch_size=80-embedding_size=128-l2=0.0001 0.531

Hyperparameters for FLCSP

We tested the following hyperparameter space:

Parameter Ranges
Learning Rate [0.01 to 0.0001]
Batch Size [20, 32, 100, 128, 200, 300, 256, 16, 250]
Embedding Size [100, 250, 50, 100, 150, 200]
L2 Penality [0.0001, 0.00001]
Dropout [0.1,0.2,0.3, 0.4, 0.5]
Epoch [10, 15, 20]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.103
  • Standard deviation: 0.086
  • Maximum value: 0.316
  • Minimum value: 0.001
Parameters/Metrics MRR@20
FLCSP_cate-epoch:15-Lr:0.002-batch_size:20-embedding_size:300-L2:1e-05-Dropout:0.2-hidden_size:50 0.226
FLCSP_cate-epoch:10-Lr:0.003-batch_size:200-embedding_size:200-L2:1e-06-Dropout:0.1-hidden_size:50 0.072
FLCSP_cate-epoch:10-Lr:0.0002-batch_size:300-embedding_size:150-L2:0.0001-Dropout:0.3-hidden_size:50 0.091
FLCSP_cate-epoch:15-Lr:0.002-batch_size:20-embedding_size:200-L2:1e-05-Dropout:0.2-hidden_size:50 0.158
FLCSP_cate-epoch:20-Lr:0.0005-batch_size:200-embedding_size:100-L2:0.0001-Dropout:0.3-hidden_size:50 0.219
FLCSP_cate-epoch:20-Lr:0.006-batch_size:32-embedding_size:250-L2:1e-05-Dropout:0.2-hidden_size:50 0.211
FLCSP_cate-epoch:15-Lr:0.003-batch_size:200-embedding_size:250-L2:1e-05-Dropout:0.2-hidden_size:50 0.093
FLCSP_cate-epoch:10-Lr:0.001-batch_size:128-embedding_size:150-L2:1e-06-Dropout:0.5-hidden_size:50 0.093
FLCSP_cate-epoch:15-Lr:0.0006-batch_size:100-embedding_size:150-L2:1e-05-Dropout:0.1-hidden_size:50 0.042
FLCSP_cate-epoch:15-Lr:1e-04-batch_size:128-embedding_size:150-L2:1e-05-Dropout:0.1-hidden_size:50 0.060
FLCSP_cate-epoch:10-Lr:0.008-batch_size:20-embedding_size:250-L2:1e-06-Dropout:0.4-hidden_size:50 0.153
FLCSP_cate-epoch:10-Lr:0.002-batch_size:20-embedding_size:200-L2:1e-05-Dropout:0.3-hidden_size:50 0.275
FLCSP_cate-epoch:10-Lr:0.0009-batch_size:300-embedding_size:250-L2:1e-05-Dropout:0.2-hidden_size:50 0.025
FLCSP_cate-epoch:20-Lr:0.004-batch_size:128-embedding_size:200-L2:0.0001-Dropout:0.1-hidden_size:50 0.019
FLCSP_cate-epoch:15-Lr:1e-04-batch_size:32-embedding_size:200-L2:1e-06-Dropout:0.3-hidden_size:50 0.001
FLCSP_cate-epoch:20-Lr:0.003-batch_size:128-embedding_size:150-L2:1e-06-Dropout:0.1-hidden_size:50 0.041
FLCSP_cate-epoch:15-Lr:0.0009-batch_size:128-embedding_size:300-L2:1e-05-Dropout:0.3-hidden_size:50 0.067
FLCSP_cate-epoch:20-Lr:0.0003-batch_size:300-embedding_size:150-L2:1e-06-Dropout:0.5-hidden_size:50 0.067
FLCSP_cate-epoch:10-Lr:0.002-batch_size:128-embedding_size:150-L2:1e-06-Dropout:0.2-hidden_size:50 0.040
FLCSP_cate-epoch:15-Lr:0.0002-batch_size:128-embedding_size:200-L2:1e-05-Dropout:0.5-hidden_size:50 0.011
FLCSP_cate-epoch:10-Lr:0.007-batch_size:100-embedding_size:150-L2:1e-06-Dropout:0.1-hidden_size:50 0.035
FLCSP_cate-epoch:15-Lr:0.0003-batch_size:200-embedding_size:250-L2:0.0001-Dropout:0.3-hidden_size:50 0.014
FLCSP_cate-epoch:10-Lr:0.009-batch_size:100-embedding_size:300-L2:1e-05-Dropout:0.1-hidden_size:50 0.012
FLCSP_cate-epoch:20-Lr:0.003-batch_size:128-embedding_size:300-L2:1e-06-Dropout:0.1-hidden_size:50 0.316
FLCSP_cate-epoch:20-Lr:0.001-batch_size:300-embedding_size:150-L2:0.0001-Dropout:0.1-hidden_size:50 0.083
FLCSP_cate-epoch:15-Lr:0.0009-batch_size:20-embedding_size:200-L2:0.0001-Dropout:0.3-hidden_size:50 0.139
FLCSP_cate-epoch:10-Lr:0.0007-batch_size:100-embedding_size:300-L2:1e-05-Dropout:0.2-hidden_size:50 0.027
FLCSP_cate-epoch:10-Lr:1e-04-batch_size:128-embedding_size:150-L2:0.0001-Dropout:0.5-hidden_size:50 0.087
FLCSP_cate-epoch:20-Lr:0.001-batch_size:128-embedding_size:250-L2:1e-05-Dropout:0.5-hidden_size:50 0.081
FLCSP_cate-epoch:20-Lr:0.0009-batch_size:32-embedding_size:250-L2:1e-05-Dropout:0.5-hidden_size:50 0.289
FLCSP_cate-epoch:10-Lr:0.0002-batch_size:128-embedding_size:300-L2:1e-06-Dropout:0.3-hidden_size:50 0.080
FLCSP_cate-epoch:15-Lr:1e-04-batch_size:200-embedding_size:150-L2:1e-06-Dropout:0.5-hidden_size:50 0.076
FLCSP_cate-epoch:20-Lr:0.004-batch_size:300-embedding_size:100-L2:1e-06-Dropout:0.2-hidden_size:50 0.014
FLCSP_cate-epoch:20-Lr:0.009-batch_size:128-embedding_size:100-L2:1e-06-Dropout:0.4-hidden_size:50 0.087
FLCSP_cate-epoch:15-Lr:0.005-batch_size:128-embedding_size:150-L2:1e-06-Dropout:0.5-hidden_size:50 0.142
FLCSP_cate-epoch:15-Lr:0.001-batch_size:100-embedding_size:150-L2:0.0001-Dropout:0.4-hidden_size:50 0.117
FLCSP_cate-epoch:20-Lr:0.0004-batch_size:20-embedding_size:200-L2:1e-05-Dropout:0.2-hidden_size:50 0.158
FLCSP_cate-epoch:20-Lr:0.0009-batch_size:128-embedding_size:200-L2:1e-05-Dropout:0.5-hidden_size:50 0.275
FLCSP_cate-epoch:10-Lr:0.001-batch_size:128-embedding_size:300-L2:0.0001-Dropout:0.2-hidden_size:50 0.028

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.035
  • Standard deviation: 0.018
  • Maximum value: 0.118
  • Minimum value: 0.020
Parameters/Metrics MRR@20
FLCSP_cate-epoch=15-lr=0.0009-batch_size=128-embedding_size=100-l2=1e-05-Dropout=0.2-hidden_size=50 0.023
FLCSP_cate-epoch=15-lr=0.004-batch_size=20-embedding_size=250-l2=0.0001-Dropout=0.1-hidden_size=50 0.019
FLCSP_cate-epoch=10-lr=0.0005-batch_size=128-embedding_size=150-l2=0.0001-Dropout=0.2-hidden_size=50 0.025
FLCSP_cate-epoch=15-lr=0.006-batch_size=32-embedding_size=300-l2=0.0001-Dropout=0.2-hidden_size=50 0.022
FLCSP_cate-epoch=10-lr=0.006-batch_size=128-embedding_size=200-l2=1e-06-Dropout=0.2-hidden_size=50 0.035
FLCSP_cate-epoch=15-lr=0.006-batch_size=200-embedding_size=300-l2=1e-05-Dropout=0.1-hidden_size=50 0.020
FLCSP_cate-epoch=10-lr=0.0007-batch_size=100-embedding_size=300-l2=1e-06-Dropout=0.2-hidden_size=50 0.023
FLCSP_cate-epoch=15-lr=0.006-batch_size=20-embedding_size=250-l2=1e-06-Dropout=0.1-hidden_size=50 0.025
FLCSP_cate-epoch=20-lr=0.0007-batch_size=20-embedding_size=200-l2=1e-06-Dropout=0.2-hidden_size=50 0.022
FLCSP_cate-epoch=15-lr=0.0009-batch_size=20-embedding_size=250-l2=1e-06-Dropout=0.4-hidden_size=50 0.037
FLCSP_cate-epoch=15-lr=0.01-batch_size=100-embedding_size=250-l2=1e-06-Dropout=0.2-hidden_size=50 0.029
FLCSP_cate-epoch=20-lr=0.005-batch_size=200-embedding_size=100-l2=1e-06-Dropout=0.5-hidden_size=50 0.029
FLCSP_cate-epoch=20-lr=1e-04-batch_size=128-embedding_size=250-l2=1e-06-Dropout=0.3-hidden_size=50 0.118
FLCSP_cate-epoch=15-lr=0.0007-batch_size=300-embedding_size=250-l2=0.0001-Dropout=0.4-hidden_size=50 0.035
FLCSP_cate-epoch=10-lr=0.0004-batch_size=200-embedding_size=100-l2=1e-05-Dropout=0.2-hidden_size=50 0.062
FLCSP_cate-epoch=20-lr=1e-04-batch_size=100-embedding_size=300-l2=1e-06-Dropout=0.2-hidden_size=50 0.118
FLCSP_cate-epoch=10-lr=0.008-batch_size=20-embedding_size=200-l2=1e-06-Dropout=0.3-hidden_size=50 0.034
FLCSP_cate-epoch=15-lr=0.01-batch_size=32-embedding_size=200-l2=0.0001-Dropout=0.5-hidden_size=50 0.022
FLCSP_cate-epoch=15-lr=0.01-batch_size=200-embedding_size=100-l2=1e-05-Dropout=0.2-hidden_size=50 0.034
FLCSP_cate-epoch=10-lr=0.0007-batch_size=100-embedding_size=300-l2=0.0001-Dropout=0.2-hidden_size=50 0.035
FLCSP_cate-epoch=10-lr=0.004-batch_size=100-embedding_size=200-l2=1e-05-Dropout=0.3-hidden_size=50 0.027
FLCSP_cate-epoch=10-lr=0.005-batch_size=128-embedding_size=100-l2=1e-06-Dropout=0.1-hidden_size=50 0.044
FLCSP_cate-epoch=10-lr=0.005-batch_size=300-embedding_size=250-l2=1e-05-Dropout=0.1-hidden_size=500 0.035
FLCSP_cate-epoch=20-lr=0.003-batch_size=100-embedding_size=150-l2=0.0001-Dropout=0.2-hidden_size=50 0.035
FLCSP_cate-epoch=15-lr=0.003-batch_size=200-embedding_size=200-l2=1e-06-Dropout=0.3-hidden_size=50 0.025
FLCSP_cate-epoch=20-lr=0.0009-batch_size=20-embedding_size=100-l2=1e-06-Dropout=0.5-hidden_size=50 0.060
FLCSP_cate-epoch=10-lr=0.01-batch_size=128-embedding_size=100-l2=0.0001-Dropout=0.2-hidden_size=50 0.025
FLCSP_cate-epoch=20-lr=0.003-batch_size=200-embedding_size=250-l2=1e-06-Dropout=0.2-hidden_size=51 0.021
FLCSP_cate-epoch=15-lr=1e-04-batch_size=200-embedding_size=150-l2=1e-05-Dropout=0.2-hidden_size=50 0.118
FLCSP_cate-epoch=15-lr=0.002-batch_size=300-embedding_size=250-l2=0.0001-Dropout=0.3-hidden_size=50 0.023
FLCSP_cate-epoch=10-lr=0.009-batch_size=300-embedding_size=100-l2=1e-06-Dropout=0.1-hidden_size=50 0.025
FLCSP_cate-epoch=10-lr=0.007-batch_size=100-embedding_size=250-l2=0.0001-Dropout=0.4-hidden_size=50 0.035
FLCSP_cate-epoch=10-lr=0.005-batch_size=32-embedding_size=100-l2=1e-05-Dropout=0.5-hidden_size=50 0.025
FLCSP_cate-epoch=20-lr=0.008-batch_size=200-embedding_size=250-l2=1e-06-Dropout=0.2-hidden_size=50 0.029
FLCSP_cate-epoch=15-lr=0.002-batch_size=100-embedding_size=250-l2=0.0001-Dropout=0.3-hidden_size=50 0.022
FLCSP_cate-epoch=15-lr=0.006-batch_size=200-embedding_size=250-l2=0.0001-Dropout=0.4-hidden_size=50 0.029
FLCSP_cate-epoch=10-lr=0.007-batch_size=200-embedding_size=300-l2=0.0001-Dropout=0.4-hidden_size=50 0.025
FLCSP_cate-epoch=15-lr=0.01-batch_size=20-embedding_size=300-l2=1e-05-Dropout=0.3-hidden_size=50 0.027
FLCSP_cate-epoch=15-lr=0.005-batch_size=128-embedding_size=100-l2=1e-05-Dropout=0.1-hidden_size=50 0.029
FLCSP_cate-epoch=15-lr=0.001-batch_size=32-embedding_size=150-l2=1e-05-Dropout=0.5-hidden_size=50 0.028
FLCSP_cate-epoch=10-lr=0.0006-batch_size=20-embedding_size=300-l2=0.0001-Dropout=0.4-hidden_size=50 0.020
FLCSP_cate-epoch=20-lr=1e-04-batch_size=128-embedding_size=200-l2=1e-05-Dropout=0.5-hidden_size=50 0.062
FLCSP_cate-epoch=10-lr=0.005-batch_size=20-embedding_size=200-l2=0.0001-Dropout=0.3-hidden_size=50 0.022
FLCSP_cate-epoch=10-lr=0.006-batch_size=300-embedding_size=300-l2=1e-06-Dropout=0.5-hidden_size=50 0.029
FLCSP_cate-epoch=15-lr=0.005-batch_size=300-embedding_size=200-l2=1e-06-Dropout=0.1-hidden_size=50 0.024
FLCSP_cate-epoch=10-lr=0.0005-batch_size=300-embedding_size=150-l2=1e-06-Dropout=0.2-hidden_size=50 0.118
FLCSP_cate-epoch=10-lr=0.0004-batch_size=300-embedding_size=250-l2=0.0001-Dropout=0.2-hidden_size=50 0.062
FLCSP_cate-epoch=15-lr=0.006-batch_size=100-embedding_size=100-l2=0.0001-Dropout=0.5-hidden_size=50 0.029
FLCSP_cate-epoch=1-lr=0.0003-batch_size=20-embedding_size=200-l2=1e-06-Dropout=0.1-hidden_size=50 0.044
FLCSP_cate-epoch=10-lr=0.007-batch_size=20-embedding_size=150-l2=0.0001-Dropout=0.5-hidden_size=50 0.022
FLCSP_cate-epoch=15-lr=0.0002-batch_size=32-embedding_size=300-l2=1e-05-Dropout=0.4-hidden_size=50 0.062
FLCSP_cate-epoch=15-lr=0.0003-batch_size=32-embedding_size=300-l2=1e-05-Dropout=0.5-hidden_size=50 0.034
FLCSP_cate-epoch=15-lr=0.0009-batch_size=200-embedding_size=200-l2=1e-06-Dropout=0.5-hidden_size=50 0.021
FLCSP_cate-epoch=10-lr=0.0005-batch_size=100-embedding_size=250-l2=0.0001-Dropout=0.3-hidden_size=50 0.027
FLCSP_cate-epoch=10-lr=0.003-batch_size=200-embedding_size=100-l2=1e-06-Dropout=0.2-hidden_size=50 0.031
FLCSP_cate-epoch=10-lr=0.0004-batch_size=20-embedding_size=200-l2=0.0001-Dropout=0.2-hidden_size=50 0.029
FLCSP_cate-epoch=15-lr=0.0008-batch_size=20-embedding_size=250-l2=1e-06-Dropout=0.2-hidden_size=50 0.034
FLCSP_cate-epoch=15-lr=0.002-batch_size=100-embedding_size=150-l2=1e-06-Dropout=0.1-hidden_size=50 0.023
FLCSP_cate-epoch=15-lr=0.004-batch_size=200-embedding_size=150-l2=0.0001-Dropout=0.3-hidden_size=50 0.029
FLCSP_cate-epoch=15-lr=0.002-batch_size=100-embedding_size=100-l2=1e-06-Dropout=0.3-hidden_size=50 0.029
FLCSP_cate-epoch=10-lr=0.009-batch_size=32-embedding_size=100-l2=1e-05-Dropout=0.5-hidden_size=50 0.022
FLCSP_cate-epoch=20-lr=1e-04-batch_size=128-embedding_size=100-l2=1e-05-Dropout=0.5-hidden_size=50 0.062
FLCSP_cate-epoch=10-lr=0.0005-batch_size=128-embedding_size=150-l2=1e-05-Dropout=0.5-hidden_size=50 0.029
FLCSP_cate-epoch=10-lr=0.001-batch_size=100-embedding_size=250-l2=1e-05-Dropout=0.3-hidden_size=50 0.025
FLCSP_cate-epoch=10-lr=0.0002-batch_size=200-embedding_size=250-l2=1e-05-Dropout=0.3-hidden_size=50 0.043
FLCSP_cate-epoch=15-lr=0.004-batch_size=300-embedding_size=250-l2=1e-05-Dropout=0.3-hidden_size=50 0.023
FLCSP_cate-epoch=20-lr=0.0004-batch_size=20-embedding_size=250-l2=0.0001-Dropout=0.5-hidden_size=50 0.035
FLCSP_cate-epoch=10-lr=0.0008-batch_size=300-embedding_size=150-l2=1e-06-Dropout=0.1-hidden_size=50 0.029
FLCSP_cate-epoch=20-lr=0.0002-batch_size=300-embedding_size=250-l2=1e-05-Dropout=0.1-hidden_size=50 0.062

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.238
  • Standard deviation: 0.133
  • Maximum value: 0.459
  • Minimum value: 0.048
Parameters/Metrics MRR@20
FLCSP_cate-epoch=20-lr=0.0004-batch_size=256-embedding_size=100-hidden_size=150-dropout=0.2-l2=1e-05 0.421
FLCSP_cate-epoch=20-lr=0.002-batch_size=16-embedding_size=250-hidden_size=150-dropout=0.1-l2=1e-05 0.125
FLCSP_cate-epoch=20-lr=1e-04-batch_size=128-embedding_size=50-hidden_size=50-dropout=0.4-l2=1e-05 0.450
FLCSP_cate-epoch=20-lr=0.001-batch_size=16-embedding_size=200-hidden_size=150-dropout=0.5-l2=0.0001 0.083
FLCSP_cate-epoch=20-lr=0.0008-batch_size=64-embedding_size=200-hidden_size=250-dropout=0.4-l2=1e-05 0.321
FLCSP_cate-epoch=20-lr=0.006-batch_size=64-embedding_size=100-hidden_size=50-dropout=0.3-l2=1e-06 0.210
FLCSP_cate-epoch=20-lr=0.008-batch_size=64-embedding_size=150-hidden_size=250-dropout=0.4-l2=1e-05 0.146
FLCSP_cate-epoch=20-lr=0.0006-batch_size=64-embedding_size=150-hidden_size=250-dropout=0.4-l2=0.0001 0.249
FLCSP_cate-epoch=20-lr=0.0006-batch_size=256-embedding_size=250-hidden_size=200-dropout=0.1-l2=1e-05 0.446
FLCSP_cate-epoch=20-lr=0.004-batch_size=32-embedding_size=150-hidden_size=250-dropout=0.2-l2=0.0001 0.101
FLCSP_cate-epoch=20-lr=0.0007-batch_size=128-embedding_size=250-hidden_size=100-dropout=0.3-l2=1e-06 0.451
FLCSP_cate-epoch=20-lr=0.0002-batch_size=16-embedding_size=100-hidden_size=200-dropout=0.5-l2=1e-05 0.209
FLCSP_cate-epoch=20-lr=0.009-batch_size=128-embedding_size=150-hidden_size=100-dropout=0.3-l2=1e-05 0.186
FLCSP_cate-epoch=20-lr=0.01-batch_size=16-embedding_size=200-hidden_size=100-dropout=0.2-l2=0.0001 0.066
FLCSP_cate-epoch=20-lr=0.005-batch_size=256-embedding_size=250-hidden_size=50-dropout=0.1-l2=1e-06 0.325
FLCSP_cate-epoch=20-lr=1e-04-batch_size=128-embedding_size=200-hidden_size=150-dropout=0.2-l2=1e-05 0.459
FLCSP_cate-epoch=20-lr=0.007-batch_size=64-embedding_size=150-hidden_size=150-dropout=0.1-l2=1e-06 0.185
FLCSP_cate-epoch=20-lr=0.0002-batch_size=64-embedding_size=150-hidden_size=150-dropout=0.3-l2=1e-05 0.356
FLCSP_cate-epoch=20-lr=0.0006-batch_size=16-embedding_size=250-hidden_size=50-dropout=0.3-l2=0.0001 0.057
FLCSP_cate-epoch=20-lr=0.0007-batch_size=16-embedding_size=250-hidden_size=250-dropout=0.3-l2=0.0001 0.048
FLCSP_cate-epoch=20-lr=0.0005-batch_size=16-embedding_size=150-hidden_size=200-dropout=0.3-l2=1e-05 0.151
FLCSP_cate-epoch=20-lr=1e-04-batch_size=16-embedding_size=250-hidden_size=50-dropout=0.4-l2=0.0001 0.138
FLCSP_cate-epoch=20-lr=0.0009-batch_size=256-embedding_size=150-hidden_size=200-dropout=0.4-l2=1e-05 0.439
FLCSP_cate-epoch=20-lr=0.0008-batch_size=128-embedding_size=100-hidden_size=200-dropout=0.5-l2=0.0001 0.272
FLCSP_cate-epoch=20-lr=0.006-batch_size=256-embedding_size=150-hidden_size=150-dropout=0.3-l2=1e-06 0.321
FLCSP_cate-epoch=20-lr=1e-04-batch_size=16-embedding_size=50-hidden_size=250-dropout=0.5-l2=1e-05 0.251
FLCSP_cate-epoch=20-lr=0.0002-batch_size=32-embedding_size=250-hidden_size=100-dropout=0.5-l2=0.0001 0.182
FLCSP_cate-epoch=20-lr=0.007-batch_size=128-embedding_size=50-hidden_size=250-dropout=0.3-l2=0.0001 0.102
FLCSP_cate-epoch=20-lr=0.003-batch_size=16-embedding_size=50-hidden_size=250-dropout=0.4-l2=1e-06 0.129
FLCSP_cate-epoch=20-lr=0.001-batch_size=32-embedding_size=200-hidden_size=100-dropout=0.5-l2=1e-06 0.277

Hyperparameters for GCEGNN

We tested the following hyperparameter space:

Parameter Ranges
Learning Rateate [0.01 to 0.00001]
Batch Size [4, 6, 8, 12, 16]
embedding_size Size [32, 40, 50, 60, 64]
L2 Penality [0.0001 to 0.00001]
Epoch [10, 12, 15]
Dropout [0.1 to 0.5]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.207
  • Standard deviation: 0.054
  • Maximum value: 0.301
  • Minimum value: 0.112
Parameters/Metrics MRR@20
GCEGNN-epoch=12-lr=0.001-batch_size=16-embedding_size_size=32-dropout=0.3-l2=0.0001 0.257
GCEGNN-epoch=12-lr=0.003-batch_size=8-embedding_size_size=64-dropout=0.3-l2=0.0001 0.165
GCEGNN-epoch=12-lr=0.009-batch_size=16-embedding_size_size=64-dropout=0.1-l2=1e-05 0.255
GCEGNN-epoch=12-lr=0.0005-batch_size=12-embedding_size_size=32-dropout=0.5-l2=0.0001 0.258
GCEGNN-epoch=12-lr=0.007-batch_size=8-embedding_size_size=32-dropout=0.1-l2=1e-05 0.205
GCEGNN-epoch=12-lr=0.0004-batch_size=12-embedding_size_size=64-dropout=0.5-l2=0.0001 0.301
GCEGNN-epoch=12-lr=0.005-batch_size=8-embedding_size_size=50-dropout=0.2-l2=0.0001 0.112
GCEGNN-epoch=12-lr=0.006-batch_size=12-embedding_size_size=32-dropout=0.5-l2=1e-05 0.245
GCEGNN-epoch=12-lr=0.0003-batch_size=12-embedding_size_size=32-dropout=0.5-l2=0.0001 0.241
GCEGNN-epoch=12-lr=0.01-batch_size=8-embedding_size_size=64-dropout=0.2-l2=1e-05 0.211
GCEGNN-epoch=10-lr=0.0008-batch_size=8-embedding_size_size=40-dropout=0.2-l2=1e-05 0.270
GCEGNN-epoch=10-lr=0.01-batch_size=8-embedding_size_size=50-dropout=0.3-l2=1e-05 0.164
GCEGNN-epoch=10-lr=0.0002-batch_size=8-embedding_size_size=32-dropout=0.3-l2=1e-05 0.246
GCEGNN-epoch=10-lr=0.0007-batch_size=4-embedding_size_size=40-dropout=0.2-l2=0.0001 0.189
GCEGNN-epoch=10-lr=0.008-batch_size=4-embedding_size_size=40-dropout=0.6-l2=1e-05 0.138
GCEGNN-epoch=10-lr=0.008-batch_size=8-embedding_size_size=50-dropout=0.1-l2=1e-06 0.247
GCEGNN-epoch=10-lr=0.01-batch_size=4-embedding_size_size=32-dropout=0.5-l2=0.0001 0.124
GCEGNN-epoch=10-lr=0.001-batch_size=4-embedding_size_size=50-dropout=0.5-l2=0.0001 0.223
GCEGNN-epoch=10-lr=0.009-batch_size=4-embedding_size_size=40-dropout=0.5-l2=1e-05 0.145
GCEGNN-epoch=10-lr=0.001-batch_size=8-embedding_size_size=50-dropout=0.5-l2=1e-05 0.283
GCEGNN-epoch=10-lr=0.001-batch_size=6-embedding_size_size=50-dropout=0.6-l2=0.0003 0.210
GCEGNN-epoch=15-lr=0.007-batch_size=8-embedding_size_size=50-dropout=0.2-l2=0.0001 0.136
GCEGNN-epoch=10-lr=0.0009-batch_size=4-embedding_size_size=32-dropout=0.5-l2=0.0003 0.162
GCEGNN-epoch=10-lr=0.003-batch_size=4-embedding_size_size=50-dropout=0.3-l2=0.0001 0.171
Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.242
  • Standard deviation: 0.021
  • Maximum value: 0.280
  • Minimum value: 0.191
Parameters/Metrics MRR@20
GCEGNN-epoch=10-lr=1e-04-batch_size=4-embedding_size_size=50-dropout=0.6-l2=1e-06 0.267
GCEGNN-epoch=10-lr=0.0004-batch_size=8-embedding_size_size=50-dropout=0.6-l2=0.0001 0.266
GCEGNN-epoch=10-lr=0.0007-batch_size=8-embedding_size_size=50-dropout=0.6-l2=1e-05 0.259
GCEGNN-epoch=10-lr=0.0005-batch_size=4-embedding_size_size=32-dropout=0.1-l2=1e-06 0.219
GCEGNN-epoch=10-lr=0.0004-batch_size=4-embedding_size_size=50-dropout=0.2-l2=1e-05 0.241
GCEGNN-epoch=10-lr=0.005-batch_size=8-embedding_size_size=50-dropout=0.2-l2=0.0001 0.213
GCEGNN-epoch=10-lr=0.007-batch_size=8-embedding_size_size=50-dropout=0.3-l2=1e-06 0.265
GCEGNN-epoch=10-lr=0.0003-batch_size=8-embedding_size_size=32-dropout=0.3-l2=0.0001 0.280
GCEGNN-epoch=10-lr=0.0008-batch_size=8-embedding_size_size=32-dropout=0.1-l2=1e-06 0.240
GCEGNN-epoch=10-lr=1e-04-batch_size=8-embedding_size_size=50-dropout=0.1-l2=1e-06 0.265
GCEGNN-epoch=10-lr=0.0007-batch_size=8-embedding_size_size=40-dropout=0.3-l2=1e-06 0.258
GCEGNN-epoch=10-lr=0.002-batch_size=8-embedding_size_size=50-dropout=0.5-l2=0.0001 0.236
GCEGNN-epoch=10-lr=0.009-batch_size=4-embedding_size_size=32-dropout=0.3-l2=1e-06 0.233
GCEGNN-epoch=10-lr=0.0007-batch_size=8-embedding_size_size=32-dropout=0.6-l2=1e-05 0.248
GCEGNN-epoch=10-lr=0.004-batch_size=8-embedding_size_size=40-dropout=0.5-l2=0.0001 0.217
GCEGNN-epoch=10-lr=0.009-batch_size=6-embedding_size_size=32-dropout=0.5-l2=1e-06 0.236
GCEGNN-epoch=10-lr=0.008-batch_size=6-embedding_size_size=40-dropout=0.2-l2=1e-05 0.212
GCEGNN-epoch=10-lr=0.008-batch_size=6-embedding_size_size=40-dropout=0.1-l2=1e-06 0.249
GCEGNN-epoch=10-lr=0.008-batch_size=4-embedding_size_size=32-dropout=0.3-l2=1e-05 0.191
GCEGNN-epoch=10-lr=0.006-batch_size=6-embedding_size_size=32-dropout=0.2-l2=1e-06 0.236
GCEGNN-epoch=15-lr=1e-04-batch_size=4-embedding_size_size=32-dropout=0.1-l2=0.0003 0.252
GCEGNN-epoch=10-lr=0.0005-batch_size=4-embedding_size_size=40-dropout=0.2-l2=0.0003 0.241
GCEGNN-epoch=10-lr=0.0008-batch_size=8-embedding_size_size=32-dropout=0.2-l2=1e-06 0.247
GCEGNN-epoch=15-lr=0.006-batch_size=4-embedding_size_size=32-dropout=0.2-l2=1e-06 0.218
GCEGNN-epoch=10-lr=0.0002-batch_size=6-embedding_size_size=40-dropout=0.6-l2=0.0003 0.271
GCEGNN-epoch=15-lr=0.004-batch_size=8-embedding_size_size=40-dropout=0.2-l2=1e-05 0.247
GCEGNN-epoch=10-lr=0.01-batch_size=4-embedding_size_size=40-dropout=0.5-l2=1e-06 0.228

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.239
  • Standard deviation: 0.073
  • Maximum value: 0.341
  • Minimum value: 0.087
Parameters/Metrics MRR@20
GCEGNN-epoch=12-lr=0.001-batch_size=4-embedding_size=40-dropout=0.3-l2=1e-05 0.294
GCEGNN-epoch=12-lr=0.004-batch_size=4-embedding_size=40-dropout=0.6-l2=0.0001 0.191
GCEGNN-epoch=12-lr=0.0005-batch_size=8-embedding_size=60-dropout=0.5-l2=0.0001 0.341
GCEGNN-epoch=12-lr=0.005-batch_size=4-embedding_size=80-dropout=0.2-l2=1e-05 0.237
GCEGNN-epoch=12-lr=0.008-batch_size=6-embedding_size=40-dropout=0.1-l2=0.0001 0.151
GCEGNN-epoch=12-lr=0.0009-batch_size=8-embedding_size=60-dropout=0.3-l2=0.0001 0.297
GCEGNN-epoch=12-lr=0.003-batch_size=6-embedding_size=60-dropout=0.5-l2=1e-05 0.235
GCEGNN-epoch=12-lr=0.003-batch_size=8-embedding_size=60-dropout=0.2-l2=0.0001 0.224
GCEGNN-epoch=12-lr=0.0002-batch_size=8-embedding_size=40-dropout=0.2-l2=1e-05 0.309
GCEGNN-epoch=12-lr=0.005-batch_size=4-embedding_size=40-dropout=0.7-l2=1e-05 0.142
GCEGNN-epoch=10-lr=0.005-batch_size=6-embedding_size=32-dropout=0.5-l2=1e-06 0.211
GCEGNN-epoch=15-lr=0.008-batch_size=8-embedding_size=50-dropout=0.1-l2=1e-05 0.251
GCEGNN-epoch=12-lr=0.004-batch_size=4-embedding_size=40-dropout=0.5-l2=0.0003 0.131
GCEGNN-epoch=10-lr=0.0009-batch_size=8-embedding_size=50-dropout=0.5-l2=0.0003 0.323
GCEGNN-epoch=15-lr=0.005-batch_size=6-embedding_size=32-dropout=0.1-l2=0.0001 0.146
GCEGNN-epoch=10-lr=0.009-batch_size=8-embedding_size=32-dropout=0.2-l2=0.0003 0.087
GCEGNN-epoch=12-lr=0.0002-batch_size=4-embedding_size=50-dropout=0.6-l2=1e-06 0.306
GCEGNN-epoch=12-lr=0.0003-batch_size=8-embedding_size=50-dropout=0.2-l2=0.0001 0.336
GCEGNN-epoch=12-lr=0.0006-batch_size=8-embedding_size=32-dropout=0.6-l2=1e-06 0.330
GCEGNN-epoch=10-lr=0.008-batch_size=8-embedding_size=50-dropout=0.2-l2=1e-06 0.302
GCEGNN-epoch=12-lr=0.003-batch_size=4-embedding_size=32-dropout=0.6-l2=1e-05 0.213
GCEGNN-epoch=15-lr=0.0005-batch_size=8-embedding_size=40-dropout=0.5-l2=0.0003 0.281
GCEGNN-epoch=12-lr=0.007-batch_size=8-embedding_size=40-dropout=0.1-l2=1e-06 0.285
GCEGNN-epoch=10-lr=0.004-batch_size=6-embedding_size=40-dropout=0.2-l2=1e-06 0.269
GCEGNN-epoch=10-lr=0.01-batch_size=8-embedding_size=40-dropout=0.5-l2=0.0001 0.154
GCEGNN-epoch=10-lr=0.0008-batch_size=8-embedding_size=40-dropout=0.5-l2=1e-06 0.335
GCEGNN-epoch=10-lr=0.01-batch_size=4-embedding_size=32-dropout=0.2-l2=1e-05 0.186
GCEGNN-epoch=10-lr=0.007-batch_size=6-embedding_size=40-dropout=0.3-l2=1e-05 0.194
GCEGNN-epoch=10-lr=1e-04-batch_size=4-embedding_size=32-dropout=0.5-l2=1e-05 0.183

Hyperparameters for SR-GNN

We tested the following hyperparameter space:

Parameter Ranges
Learning Rateate [0.01 to 0.00001]
Batch Size [100, 128, 200, 256]
embedding_size Size [50, 100, 150, 200]
L2 Penality [0.0001 to 0.00001]
Epoch [10, 15, 20]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.324
  • Standard deviation: 0.024
  • Maximum value: 0.360
  • Minimum value: 0.282
Parameters/Metrics MRR@20
GGNN-epoch=10-lr=0.0009-embedding_size=50-batch_size=200-l2=1e-05 0.335
GGNN-epoch=10-lr=0.0008-embedding_size=150-batch_size=256-l2=0.0003 0.317
GGNN-epoch=10-lr=0.0008-embedding_size=150-batch_size=200-l2=1e-05 0.293
GGNN-epoch=10-lr=0.0004-embedding_size=50-batch_size=256-l2=0.0003 0.339
GGNN-epoch=10-lr=0.0005-embedding_size=100-batch_size=128-l2=0.0001 0.328
GGNN-epoch=10-lr=0.0007-embedding_size=200-batch_size=100-l2=0.0003 0.303
GGNN-epoch=10-lr=0.0009-embedding_size=50-batch_size=200-l2=0.0001 0.345
GGNN-epoch=10-lr=0.005-embedding_size=150-batch_size=128-l2=1e-05 0.335
GGNN-epoch=10-lr=0.001-embedding_size=200-batch_size=128-l2=1e-05 0.285
GGNN-epoch=10-lr=0.0003-embedding_size=100-batch_size=200-l2=1e-05 0.311
GGNN-epoch=10-lr=0.007-embedding_size=100-batch_size=200-l2=0.0003 0.342
GGNN-epoch=15-lr=0.01-embedding_size=50-batch_size=100-l2=0.0003 0.330
GGNN-epoch=10-lr=0.0004-embedding_size=200-batch_size=128-l2=0.0003 0.329
GGNN-epoch=20-lr=0.006-embedding_size=100-batch_size=256-l2=0.0003 0.354
GGNN-epoch=15-lr=0.0008-embedding_size=50-batch_size=256-l2=0.0001 0.347
GGNN-epoch=20-lr=0.008-embedding_size=150-batch_size=200-l2=0.0001 0.344
GGNN-epoch=10-lr=0.001-embedding_size=50-batch_size=100-l2=1e-05 0.332
GGNN-epoch=10-lr=0.0002-embedding_size=200-batch_size=150-l2=1e-05 0.283
GGNN-epoch=20-lr=0.01-embedding_size=150-batch_size=150-l2=0.0003 0.338
GGNN-epoch=10-lr=0.006-embedding_size=100-batch_size=128-l2=0.0003 0.360
GGNN-epoch=10-lr=0.005-embedding_size=150-batch_size=150-l2=0.0001 0.311
GGNN-epoch=20-lr=0.0006-embedding_size=50-batch_size=200-l2=0.0001 0.358
GGNN-epoch=15-lr=0.001-embedding_size=200-batch_size=200-l2=0.0001 0.282
GGNN-epoch=15-lr=0.001-embedding_size=200-batch_size=100-l2=0.0003 0.307
GGNN-epoch=15-lr=0.0007-embedding_size=200-batch_size=200-l2=1e-05 0.284

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.255
  • Standard deviation: 0.012
  • Maximum value: 0.270
  • Minimum value: 0.226
Parameters/Metrics MRR@20
GGNN-epoch=10-lr=0.0003-embedding_size=100-batch_size=150-l2=0.0003 0.233
GGNN-epoch=10-lr=0.0004-embedding_size=50-batch_size=128-l2=0.0001 0.226
GGNN-epoch=10-lr=0.009-embedding_size=50-batch_size=200-l2=0.0001 0.270
GGNN-epoch=10-lr=0.004-embedding_size=150-batch_size=128-l2=0.0001 0.269
GGNN-epoch=10-lr=0.006-embedding_size=50-batch_size=100-l2=0.0001 0.268
GGNN-epoch=10-lr=0.005-embedding_size=150-batch_size=200-l2=0.0001 0.263
GGNN-epoch=10-lr=0.002-embedding_size=100-batch_size=200-l2=0.0003 0.257
GGNN-epoch=10-lr=0.0006-embedding_size=100-batch_size=256-l2=0.0003 0.253
GGNN-epoch=10-lr=0.0007-embedding_size=200-batch_size=256-l2=0.0003 0.246
GGNN-epoch=10-lr=0.002-embedding_size=150-batch_size=150-l2=0.0001 0.262
GGNN-epoch=15-lr=0.008-embedding_size=200-batch_size=256-l2=1e-05 0.258
GGNN-epoch=10-lr=0.005-embedding_size=50-batch_size=128-l2=1e-05 0.266
GGNN-epoch=15-lr=1e-04-embedding_size=150-batch_size=150-l2=0.0001 0.233
GGNN-epoch=20-lr=0.002-embedding_size=200-batch_size=150-l2=0.0003 0.264
GGNN-epoch=20-lr=0.008-embedding_size=200-batch_size=200-l2=0.0001 0.249
GGNN-epoch=15-lr=0.001-embedding_size=100-batch_size=100-l2=0.0001 0.269
GGNN-epoch=10-lr=0.006-embedding_size=150-batch_size=100-l2=0.0001 0.258
GGNN-epoch=20-lr=0.0006-embedding_size=150-batch_size=100-l2=0.0003 0.252
GGNN-epoch=10-lr=0.0002-embedding_size=150-batch_size=100-l2=0.0003 0.236
GGNN-epoch=15-lr=0.0007-embedding_size=50-batch_size=256-l2=0.0001 0.247
GGNN-epoch=15-lr=0.001-embedding_size=150-batch_size=150-l2=0.0003 0.255
GGNN-epoch=15-lr=0.0006-embedding_size=100-batch_size=100-l2=0.0001 0.263
GGNN-epoch=20-lr=0.001-embedding_size=200-batch_size=200-l2=1e-05 0.262
GGNN-epoch=10-lr=0.0009-embedding_size=100-batch_size=200-l2=1e-05 0.262
GGNN-epoch=10-lr=0.0009-embedding_size=50-batch_size=100-l2=0.0001 0.253
GGNN-epoch=20-lr=0.005-embedding_size=50-batch_size=200-l2=0.0003 0.263

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.586
  • Standard deviation: 0.019
  • Maximum value: 0.621
  • Minimum value: 0.529
Parameters/Metrics MRR@20
GGNN-epoch=10-lr=0.0005-embedding_size=200-batch_size=200-l2=0.0001 0.589
GGNN-epoch=10-lr=0.004-embedding_size=150-batch_size=256-l2=1e-05 0.621
GGNN-epoch=10-lr=0.0009-embedding_size=100-batch_size=128-l2=1e-05 0.603
GGNN-epoch=10-lr=0.005-embedding_size=50-batch_size=150-l2=0.0001 0.584
GGNN-epoch=10-lr=0.009-embedding_size=150-batch_size=128-l2=1e-05 0.583
GGNN-epoch=10-lr=0.002-embedding_size=200-batch_size=200-l2=0.0001 0.610
GGNN-epoch=10-lr=0.0008-embedding_size=50-batch_size=128-l2=1e-05 0.575
GGNN-epoch=10-lr=0.009-embedding_size=150-batch_size=200-l2=0.0003 0.590
GGNN-epoch=10-lr=0.0002-embedding_size=50-batch_size=200-l2=0.0003 0.529
GGNN-epoch=10-lr=0.0004-embedding_size=200-batch_size=100-l2=0.0001 0.588
GGNN-epoch=15-lr=0.0004-embedding_size=50-batch_size=100-l2=0.0003 0.575
GGNN-epoch=20-lr=0.005-embedding_size=50-batch_size=150-l2=1e-05 0.598
GGNN-epoch=20-lr=0.009-embedding_size=200-batch_size=128-l2=0.0001 0.614
GGNN-epoch=20-lr=0.002-embedding_size=100-batch_size=128-l2=0.0003 0.576
GGNN-epoch=15-lr=0.001-embedding_size=200-batch_size=128-l2=0.0003 0.588
GGNN-epoch=10-lr=0.0005-embedding_size=50-batch_size=200-l2=0.0003 0.572
GGNN-epoch=20-lr=0.01-embedding_size=200-batch_size=128-l2=0.0003 0.583
GGNN-epoch=10-lr=0.005-embedding_size=100-batch_size=100-l2=0.0001 0.612
GGNN-epoch=10-lr=0.002-embedding_size=50-batch_size=150-l2=1e-05 0.584
GGNN-epoch=15-lr=0.002-embedding_size=100-batch_size=256-l2=0.0003 0.583
GGNN-epoch=20-lr=0.0004-embedding_size=150-batch_size=200-l2=0.0001 0.577
GGNN-epoch=20-lr=0.0003-embedding_size=200-batch_size=150-l2=1e-05 0.582
GGNN-epoch=20-lr=0.0003-embedding_size=200-batch_size=200-l2=1e-05 0.579
GGNN-epoch=10-lr=0.005-embedding_size=50-batch_size=100-l2=1e-05 0.598
GGNN-epoch=20-lr=0.0002-embedding_size=50-batch_size=100-l2=0.0001 0.557

Hyperparameters for STAN

We tested the following hyperparameter space:

Parameter Options
Number of Neighbors [50, 100, 500, 600, 700, 800, 1000, 1300, 1400, 1500, 1700, 2000, 2500, 2800, 3000]
Sample Size [500, 600, 1000, 1100, 2500, 1900, 5000, 7000, 8000, 10000]
lambda_spw [0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.11, 0.12, 0.101, 0.102, 0.103, 0.104, 0.105, 0.106, 0.107, 0.108, 0.15, 0.16, 1.2, 1.8, 2.4]
lambda_snh [50, 57, 80, 100, 150, 200, 400, 450, 470, 500, 520, 530, 600]
lambda_inh [0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 1.8, 2, 2.5, 2.8, 3, 3.5, 3.8, 4]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.379
  • Standard deviation: 0.005
  • Maximum value: 0.386
  • Minimum value: 0.364
Parameter/Metrics MRR@20
stan-k=570-sample_size=2700-lambda_spw=0.81-lambda_snh=600-lambda_inh=5 0.369
stan-k=510-sample_size=2900-lambda_spw=0.15-lambda_snh=10-lambda_inh=0.55 0.382
stan-k=4000-sample_size=2900-lambda_spw=0.13-lambda_snh=150-lambda_inh=0.57 0.383
stan-k=4500-sample_size=2000-lambda_spw=0.13-lambda_snh=450-lambda_inh=2 0.383
stan-k=600-sample_size=2700-lambda_spw=0.13-lambda_snh=150-lambda_inh=0.5 0.382
stan-k=4500-sample_size=2650-lambda_spw=0.15-lambda_snh=50-lambda_inh=0.58 0.385
stan-k=4000-sample_size=1000-lambda_spw=0.4-lambda_snh=500-lambda_inh=0.55 0.376
stan-k=3500-sample_size=2800-lambda_spw=0.7-lambda_snh=600-lambda_inh=2 0.374
stan-k=5500-sample_size=2650-lambda_spw=0.4-lambda_snh=470-lambda_inh=0.58 0.376
stan-k=2500-sample_size=2000-lambda_spw=0.4-lambda_snh=400-lambda_inh=0.57 0.376
stan-k=600-sample_size=2800-lambda_spw=0.81-lambda_snh=400-lambda_inh=5 0.369
stan-k=5500-sample_size=500-lambda_spw=0.7-lambda_snh=530-lambda_inh=5 0.373
stan-k=600-sample_size=2500-lambda_spw=0.81-lambda_snh=350-lambda_inh=6 0.369
stan-k=3000-sample_size=1000-lambda_spw=0.81-lambda_snh=530-lambda_inh=0.55 0.365
stan-k=3000-sample_size=2500-lambda_spw=0.16-lambda_snh=25-lambda_inh=0.5 0.386
stan-k=750-sample_size=2000-lambda_spw=0.14-lambda_snh=300-lambda_inh=1.5 0.384
stan-k=530-sample_size=2500-lambda_spw=0.12-lambda_snh=100-lambda_inh=0.58 0.383
stan-k=570-sample_size=500-lambda_spw=0.4-lambda_snh=350-lambda_inh=0.55 0.376
stan-k=4500-sample_size=2900-lambda_spw=0.16-lambda_snh=50-lambda_inh=1.5 0.386
stan-k=4000-sample_size=2700-lambda_spw=0.35-lambda_snh=530-lambda_inh=0.51 0.376
stan-k=750-sample_size=2500-lambda_spw=0.6-lambda_snh=50-lambda_inh=0.54 0.374
stan-k=700-sample_size=2800-lambda_spw=0.4-lambda_snh=470-lambda_inh=0.53 0.375
stan-k=600-sample_size=2000-lambda_spw=0.12-lambda_snh=50-lambda_inh=0.51 0.384
stan-k=4500-sample_size=2000-lambda_spw=0.12-lambda_snh=10-lambda_inh=2 0.386
stan-k=1500-sample_size=2000-lambda_spw=0.12-lambda_snh=100-lambda_inh=0.52 0.383
stan-k=510-sample_size=2800-lambda_spw=0.81-lambda_snh=150-lambda_inh=0.57 0.365
stan-k=2800-sample_size=2700-lambda_spw=0.81-lambda_snh=350-lambda_inh=0.56 0.364
stan-k=3500-sample_size=2000-lambda_spw=0.7-lambda_snh=250-lambda_inh=1.5 0.375
stan-k=2000-sample_size=2800-lambda_spw=0.81-lambda_snh=500-lambda_inh=0.5 0.364
stan-k=5000-sample_size=2700-lambda_spw=0.6-lambda_snh=350-lambda_inh=0.5 0.370
stan-k=2000-sample_size=2800-lambda_spw=0.4-lambda_snh=150-lambda_inh=0.52 0.376
stan-k=4000-sample_size=2550-lambda_spw=0.35-lambda_snh=450-lambda_inh=0.51 0.376
stan-k=5000-sample_size=2900-lambda_spw=0.7-lambda_snh=50-lambda_inh=1 0.374
stan-k=750-sample_size=2500-lambda_spw=0.14-lambda_snh=470-lambda_inh=1.5 0.383
stan-k=750-sample_size=500-lambda_spw=0.13-lambda_snh=450-lambda_inh=6 0.382
stan-k=1500-sample_size=2550-lambda_spw=0.1-lambda_snh=250-lambda_inh=7 0.382
stan-k=5500-sample_size=2000-lambda_spw=0.16-lambda_snh=530-lambda_inh=0.55 0.382
stan-k=1500-sample_size=2700-lambda_spw=0.7-lambda_snh=600-lambda_inh=7 0.374
stan-k=530-sample_size=500-lambda_spw=0.6-lambda_snh=300-lambda_inh=0.55 0.372
stan-k=600-sample_size=3000-lambda_spw=0.1-lambda_snh=300-lambda_inh=20 0.379
stan-k=1500-sample_size=1500-lambda_spw=0.1-lambda_snh=50-lambda_inh=0.54 0.384
stan-k=3500-sample_size=1000-lambda_spw=0.17-lambda_snh=530-lambda_inh=0.54 0.382
stan-k=600-sample_size=2550-lambda_spw=0.15-lambda_snh=450-lambda_inh=0.53 0.383
stan-k=6000-sample_size=2500-lambda_spw=0.12-lambda_snh=600-lambda_inh=1.5 0.383
stan-k=2500-sample_size=2650-lambda_spw=0.1-lambda_snh=520-lambda_inh=0.51 0.383
stan-k=5500-sample_size=2550-lambda_spw=0.15-lambda_snh=50-lambda_inh=0.53 0.384
stan-k=700-sample_size=2500-lambda_spw=0.13-lambda_snh=100-lambda_inh=9 0.381
stan-k=750-sample_size=3000-lambda_spw=0.35-lambda_snh=150-lambda_inh=9 0.379
stan-k=3500-sample_size=2500-lambda_spw=0.81-lambda_snh=450-lambda_inh=7 0.368
stan-k=4000-sample_size=2650-lambda_spw=0.1-lambda_snh=100-lambda_inh=0.5 0.383
stan-k=700-sample_size=2550-lambda_spw=0.14-lambda_snh=520-lambda_inh=0.55 0.383
stan-k=4000-sample_size=2800-lambda_spw=0.12-lambda_snh=100-lambda_inh=6 0.382
stan-k=2800-sample_size=1000-lambda_spw=0.15-lambda_snh=50-lambda_inh=0.5 0.383
stan-k=4500-sample_size=1000-lambda_spw=0.1-lambda_snh=250-lambda_inh=2 0.383
stan-k=1500-sample_size=2800-lambda_spw=0.81-lambda_snh=50-lambda_inh=20 0.370
stan-k=2500-sample_size=2000-lambda_spw=0.15-lambda_snh=500-lambda_inh=1 0.382
stan-k=4500-sample_size=2550-lambda_spw=0.14-lambda_snh=470-lambda_inh=7 0.382
stan-k=570-sample_size=2500-lambda_spw=0.4-lambda_snh=150-lambda_inh=0.56 0.376
stan-k=2000-sample_size=500-lambda_spw=0.15-lambda_snh=300-lambda_inh=0.52 0.383
stan-k=2000-sample_size=2550-lambda_spw=0.15-lambda_snh=200-lambda_inh=6 0.383
stan-k=2000-sample_size=2550-lambda_spw=0.12-lambda_snh=200-lambda_inh=0.56 0.383
stan-k=530-sample_size=2650-lambda_spw=0.6-lambda_snh=10-lambda_inh=0.52 0.372
stan-k=4000-sample_size=2000-lambda_spw=0.35-lambda_snh=100-lambda_inh=0.55 0.378
stan-k=3000-sample_size=1500-lambda_spw=0.16-lambda_snh=50-lambda_inh=1 0.386
stan-k=5500-sample_size=1000-lambda_spw=0.17-lambda_snh=300-lambda_inh=20 0.379
stan-k=700-sample_size=2700-lambda_spw=0.35-lambda_snh=25-lambda_inh=9 0.380
stan-k=1500-sample_size=1000-lambda_spw=0.81-lambda_snh=100-lambda_inh=0.57 0.366
stan-k=3000-sample_size=1000-lambda_spw=0.1-lambda_snh=450-lambda_inh=0.55 0.383
stan-k=4500-sample_size=500-lambda_spw=0.35-lambda_snh=450-lambda_inh=7 0.380
stan-k=510-sample_size=1000-lambda_spw=0.4-lambda_snh=200-lambda_inh=0.56 0.377
stan-k=630-sample_size=3000-lambda_spw=0.13-lambda_snh=200-lambda_inh=0.57 0.383
stan-k=5500-sample_size=2650-lambda_spw=0.17-lambda_snh=350-lambda_inh=1.5 0.383
stan-k=5500-sample_size=2900-lambda_spw=0.4-lambda_snh=200-lambda_inh=0.58 0.377
stan-k=700-sample_size=500-lambda_spw=0.13-lambda_snh=200-lambda_inh=20 0.379
stan-k=600-sample_size=2550-lambda_spw=0.4-lambda_snh=10-lambda_inh=0.57 0.377
stan-k=570-sample_size=1500-lambda_spw=0.4-lambda_snh=400-lambda_inh=15 0.378
stan-k=5500-sample_size=2550-lambda_spw=0.35-lambda_snh=25-lambda_inh=0.53 0.381
stan-k=700-sample_size=1000-lambda_spw=0.35-lambda_snh=350-lambda_inh=0.55 0.377
stan-k=2500-sample_size=500-lambda_spw=0.7-lambda_snh=25-lambda_inh=0.54 0.373
stan-k=600-sample_size=2000-lambda_spw=0.4-lambda_snh=470-lambda_inh=0.53 0.376
stan-k=3500-sample_size=2700-lambda_spw=0.7-lambda_snh=250-lambda_inh=1 0.373
stan-k=630-sample_size=2000-lambda_spw=0.13-lambda_snh=25-lambda_inh=6 0.385
stan-k=6000-sample_size=1000-lambda_spw=0.17-lambda_snh=400-lambda_inh=1.5 0.383
stan-k=750-sample_size=2000-lambda_spw=0.35-lambda_snh=150-lambda_inh=1.5 0.380
stan-k=1500-sample_size=500-lambda_spw=0.4-lambda_snh=250-lambda_inh=1 0.378
stan-k=3000-sample_size=1500-lambda_spw=0.13-lambda_snh=100-lambda_inh=0.52 0.383
stan-k=5000-sample_size=2000-lambda_spw=0.16-lambda_snh=530-lambda_inh=20 0.379
stan-k=570-sample_size=1000-lambda_spw=0.17-lambda_snh=470-lambda_inh=0.55 0.382
stan-k=4000-sample_size=500-lambda_spw=0.17-lambda_snh=25-lambda_inh=20 0.382
stan-k=2800-sample_size=1000-lambda_spw=0.1-lambda_snh=470-lambda_inh=2 0.383
stan-k=700-sample_size=1000-lambda_spw=0.16-lambda_snh=50-lambda_inh=15 0.381
stan-k=530-sample_size=2900-lambda_spw=0.17-lambda_snh=600-lambda_inh=2 0.383
stan-k=510-sample_size=500-lambda_spw=0.4-lambda_snh=150-lambda_inh=9 0.379
stan-k=2000-sample_size=2650-lambda_spw=0.1-lambda_snh=50-lambda_inh=0.5 0.384
stan-k=630-sample_size=3000-lambda_spw=0.4-lambda_snh=100-lambda_inh=0.55 0.377
stan-k=4500-sample_size=1500-lambda_spw=0.7-lambda_snh=520-lambda_inh=15 0.372
stan-k=750-sample_size=1000-lambda_spw=0.81-lambda_snh=25-lambda_inh=1 0.373
stan-k=3500-sample_size=2800-lambda_spw=0.12-lambda_snh=150-lambda_inh=20 0.379
stan-k=570-sample_size=500-lambda_spw=0.81-lambda_snh=25-lambda_inh=1 0.373
stan-k=630-sample_size=1000-lambda_spw=0.14-lambda_snh=520-lambda_inh=2 0.383

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.285
  • Standard deviation: 0.002
  • Maximum value: 0.289
  • Minimum value: 0.279
Parameter/Metrics MRR@20
stan-k=4000-sample_size=1500-lambda_spw=0.14-lambda_snh=100-lambda_inh=0.54 0.285
stan-k=1500-sample_size=2650-lambda_spw=0.17-lambda_snh=470-lambda_inh=0.5 0.285
stan-k=700-sample_size=2900-lambda_spw=0.81-lambda_snh=300-lambda_inh=1.5 0.288
stan-k=700-sample_size=3000-lambda_spw=0.12-lambda_snh=50-lambda_inh=0.52 0.284
stan-k=2000-sample_size=2800-lambda_spw=0.17-lambda_snh=50-lambda_inh=1.5 0.285
stan-k=5000-sample_size=1500-lambda_spw=0.14-lambda_snh=100-lambda_inh=0.56 0.285
stan-k=530-sample_size=500-lambda_spw=0.12-lambda_snh=200-lambda_inh=0.5 0.284
stan-k=2000-sample_size=2800-lambda_spw=0.13-lambda_snh=350-lambda_inh=0.58 0.285
stan-k=570-sample_size=2700-lambda_spw=0.81-lambda_snh=25-lambda_inh=0.56 0.282
stan-k=5500-sample_size=2800-lambda_spw=0.1-lambda_snh=200-lambda_inh=6 0.284
stan-k=570-sample_size=1000-lambda_spw=0.16-lambda_snh=300-lambda_inh=0.54 0.285
stan-k=700-sample_size=1000-lambda_spw=0.16-lambda_snh=530-lambda_inh=1.5 0.285
stan-k=2800-sample_size=2900-lambda_spw=0.7-lambda_snh=400-lambda_inh=15 0.286
stan-k=700-sample_size=2800-lambda_spw=0.16-lambda_snh=450-lambda_inh=2 0.285
stan-k=570-sample_size=2500-lambda_spw=0.1-lambda_snh=470-lambda_inh=20 0.284
stan-k=5500-sample_size=2650-lambda_spw=0.81-lambda_snh=600-lambda_inh=6 0.287
stan-k=2500-sample_size=2500-lambda_spw=0.1-lambda_snh=100-lambda_inh=2 0.285
stan-k=750-sample_size=2700-lambda_spw=0.12-lambda_snh=150-lambda_inh=0.57 0.285
stan-k=700-sample_size=2550-lambda_spw=0.13-lambda_snh=250-lambda_inh=1 0.285
stan-k=3000-sample_size=2000-lambda_spw=0.13-lambda_snh=450-lambda_inh=9 0.284
stan-k=5500-sample_size=2000-lambda_spw=0.81-lambda_snh=600-lambda_inh=5 0.288
stan-k=4500-sample_size=2550-lambda_spw=0.17-lambda_snh=50-lambda_inh=9 0.284
stan-k=530-sample_size=500-lambda_spw=0.14-lambda_snh=300-lambda_inh=0.55 0.285
stan-k=2800-sample_size=2650-lambda_spw=0.16-lambda_snh=530-lambda_inh=2 0.286
stan-k=750-sample_size=3000-lambda_spw=0.15-lambda_snh=250-lambda_inh=0.53 0.285
stan-k=2000-sample_size=2900-lambda_spw=0.15-lambda_snh=25-lambda_inh=15 0.284
stan-k=530-sample_size=1500-lambda_spw=0.12-lambda_snh=350-lambda_inh=2 0.286
stan-k=2800-sample_size=3000-lambda_spw=0.16-lambda_snh=400-lambda_inh=7 0.284
stan-k=630-sample_size=2650-lambda_spw=0.16-lambda_snh=200-lambda_inh=0.57 0.285
stan-k=2000-sample_size=2550-lambda_spw=0.6-lambda_snh=150-lambda_inh=5 0.288
stan-k=3000-sample_size=1500-lambda_spw=0.6-lambda_snh=500-lambda_inh=0.57 0.281
stan-k=630-sample_size=2500-lambda_spw=0.7-lambda_snh=450-lambda_inh=0.5 0.279
stan-k=5000-sample_size=2700-lambda_spw=0.81-lambda_snh=300-lambda_inh=0.56 0.282
stan-k=5000-sample_size=2800-lambda_spw=0.6-lambda_snh=530-lambda_inh=0.53 0.282
stan-k=4500-sample_size=2900-lambda_spw=0.12-lambda_snh=520-lambda_inh=0.51 0.284
stan-k=700-sample_size=3000-lambda_spw=0.15-lambda_snh=450-lambda_inh=15 0.284
stan-k=5500-sample_size=500-lambda_spw=0.13-lambda_snh=200-lambda_inh=9 0.285
stan-k=570-sample_size=1500-lambda_spw=0.81-lambda_snh=350-lambda_inh=20 0.287
stan-k=600-sample_size=2000-lambda_spw=0.6-lambda_snh=25-lambda_inh=6 0.287
stan-k=6000-sample_size=2550-lambda_spw=0.16-lambda_snh=400-lambda_inh=0.53 0.285
stan-k=5000-sample_size=1000-lambda_spw=0.1-lambda_snh=500-lambda_inh=7 0.284
stan-k=4000-sample_size=2500-lambda_spw=0.17-lambda_snh=250-lambda_inh=1.5 0.286
stan-k=700-sample_size=2700-lambda_spw=0.6-lambda_snh=500-lambda_inh=1.5 0.289
stan-k=3000-sample_size=3000-lambda_spw=0.4-lambda_snh=250-lambda_inh=9 0.287
stan-k=5500-sample_size=1000-lambda_spw=0.4-lambda_snh=520-lambda_inh=0.53 0.284
stan-k=600-sample_size=2000-lambda_spw=0.81-lambda_snh=450-lambda_inh=5 0.288
stan-k=5500-sample_size=2500-lambda_spw=0.13-lambda_snh=10-lambda_inh=0.56 0.286
stan-k=2800-sample_size=2800-lambda_spw=0.6-lambda_snh=10-lambda_inh=0.56 0.283
stan-k=2500-sample_size=3000-lambda_spw=0.17-lambda_snh=500-lambda_inh=6 0.284
stan-k=750-sample_size=1000-lambda_spw=0.1-lambda_snh=530-lambda_inh=7 0.284
stan-k=1500-sample_size=1000-lambda_spw=0.14-lambda_snh=530-lambda_inh=0.54 0.284
stan-k=750-sample_size=2000-lambda_spw=0.17-lambda_snh=450-lambda_inh=0.56 0.285
stan-k=6000-sample_size=2000-lambda_spw=0.1-lambda_snh=100-lambda_inh=7 0.284
stan-k=2500-sample_size=2650-lambda_spw=0.4-lambda_snh=300-lambda_inh=0.52 0.283
stan-k=4500-sample_size=2800-lambda_spw=0.17-lambda_snh=25-lambda_inh=1 0.285
stan-k=600-sample_size=2550-lambda_spw=0.12-lambda_snh=25-lambda_inh=0.56 0.284
stan-k=3500-sample_size=2700-lambda_spw=0.13-lambda_snh=250-lambda_inh=1 0.285
stan-k=4000-sample_size=1500-lambda_spw=0.17-lambda_snh=250-lambda_inh=0.52 0.285
stan-k=2000-sample_size=2800-lambda_spw=0.4-lambda_snh=400-lambda_inh=0.52 0.283
stan-k=700-sample_size=2650-lambda_spw=0.1-lambda_snh=350-lambda_inh=0.57 0.285
stan-k=570-sample_size=2000-lambda_spw=0.17-lambda_snh=350-lambda_inh=1.5 0.286
stan-k=1500-sample_size=1000-lambda_spw=0.12-lambda_snh=350-lambda_inh=1.5 0.285
stan-k=5500-sample_size=2000-lambda_spw=0.81-lambda_snh=250-lambda_inh=1 0.286
stan-k=3000-sample_size=2650-lambda_spw=0.16-lambda_snh=150-lambda_inh=0.58 0.285
stan-k=5000-sample_size=1000-lambda_spw=0.15-lambda_snh=530-lambda_inh=0.55 0.285
stan-k=570-sample_size=2500-lambda_spw=0.16-lambda_snh=400-lambda_inh=15 0.284
stan-k=530-sample_size=2550-lambda_spw=0.17-lambda_snh=450-lambda_inh=20 0.284
stan-k=3500-sample_size=3000-lambda_spw=0.12-lambda_snh=200-lambda_inh=0.51 0.284
stan-k=5500-sample_size=500-lambda_spw=0.6-lambda_snh=100-lambda_inh=5 0.288
stan-k=700-sample_size=500-lambda_spw=0.6-lambda_snh=500-lambda_inh=15 0.286
stan-k=6000-sample_size=2900-lambda_spw=0.14-lambda_snh=470-lambda_inh=1 0.285
stan-k=750-sample_size=1000-lambda_spw=0.81-lambda_snh=470-lambda_inh=1.5 0.288
stan-k=750-sample_size=2500-lambda_spw=0.17-lambda_snh=300-lambda_inh=20 0.284
stan-k=630-sample_size=2650-lambda_spw=0.14-lambda_snh=520-lambda_inh=9 0.284
stan-k=3000-sample_size=2650-lambda_spw=0.14-lambda_snh=10-lambda_inh=6 0.284
stan-k=510-sample_size=1500-lambda_spw=0.14-lambda_snh=400-lambda_inh=9 0.284
stan-k=2800-sample_size=2700-lambda_spw=0.14-lambda_snh=530-lambda_inh=0.58 0.285
stan-k=2800-sample_size=1500-lambda_spw=0.4-lambda_snh=350-lambda_inh=0.54 0.284
stan-k=700-sample_size=3000-lambda_spw=0.6-lambda_snh=530-lambda_inh=0.54 0.281
stan-k=2000-sample_size=1500-lambda_spw=0.14-lambda_snh=530-lambda_inh=0.55 0.284
stan-k=600-sample_size=2700-lambda_spw=0.81-lambda_snh=50-lambda_inh=5 0.288
stan-k=750-sample_size=2500-lambda_spw=0.6-lambda_snh=150-lambda_inh=9 0.288
stan-k=750-sample_size=500-lambda_spw=0.6-lambda_snh=470-lambda_inh=0.58 0.282
stan-k=530-sample_size=500-lambda_spw=0.12-lambda_snh=470-lambda_inh=0.5 0.284
stan-k=510-sample_size=2900-lambda_spw=0.15-lambda_snh=150-lambda_inh=0.58 0.285
stan-k=700-sample_size=2700-lambda_spw=0.35-lambda_snh=600-lambda_inh=0.56 0.287
stan-k=570-sample_size=2550-lambda_spw=0.35-lambda_snh=450-lambda_inh=7 0.286
stan-k=6000-sample_size=500-lambda_spw=0.14-lambda_snh=530-lambda_inh=7 0.285
stan-k=700-sample_size=3000-lambda_spw=0.7-lambda_snh=300-lambda_inh=15 0.286
stan-k=530-sample_size=2650-lambda_spw=0.7-lambda_snh=300-lambda_inh=6 0.288
stan-k=600-sample_size=3000-lambda_spw=0.1-lambda_snh=600-lambda_inh=2 0.285
stan-k=2500-sample_size=1500-lambda_spw=0.7-lambda_snh=300-lambda_inh=0.51 0.279
stan-k=510-sample_size=2700-lambda_spw=0.35-lambda_snh=400-lambda_inh=7 0.286
stan-k=1500-sample_size=2550-lambda_spw=0.4-lambda_snh=500-lambda_inh=6 0.287
stan-k=3000-sample_size=1000-lambda_spw=0.17-lambda_snh=350-lambda_inh=7 0.284
stan-k=530-sample_size=500-lambda_spw=0.81-lambda_snh=150-lambda_inh=0.54 0.282
stan-k=4500-sample_size=3000-lambda_spw=0.4-lambda_snh=300-lambda_inh=2 0.288
stan-k=1500-sample_size=2900-lambda_spw=0.14-lambda_snh=520-lambda_inh=2 0.285
stan-k=630-sample_size=2700-lambda_spw=0.7-lambda_snh=10-lambda_inh=6 0.288
stan-k=2800-sample_size=3000-lambda_spw=0.81-lambda_snh=150-lambda_inh=6 0.287

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.881
  • Standard deviation: 0.006
  • Maximum value: 0.898
  • Minimum value: 0.869
Parameter/Metrics MRR@20
stan-k=3500-sample_size=3000-lambda_spw=0.7-lambda_snh=250-lambda_inh=0.57 0.887
stan-k=530-sample_size=2000-lambda_spw=0.16-lambda_snh=520-lambda_inh=6 0.869
stan-k=630-sample_size=3000-lambda_spw=0.6-lambda_snh=100-lambda_inh=0.51 0.887
stan-k=570-sample_size=2700-lambda_spw=0.17-lambda_snh=25-lambda_inh=0.58 0.887
stan-k=5000-sample_size=1500-lambda_spw=0.13-lambda_snh=450-lambda_inh=20 0.877
stan-k=700-sample_size=2650-lambda_spw=0.1-lambda_snh=500-lambda_inh=7 0.873
stan-k=6000-sample_size=2800-lambda_spw=0.7-lambda_snh=400-lambda_inh=0.55 0.887
stan-k=2000-sample_size=2000-lambda_spw=0.4-lambda_snh=350-lambda_inh=2 0.880
stan-k=6000-sample_size=2800-lambda_spw=0.1-lambda_snh=200-lambda_inh=7 0.877
stan-k=5000-sample_size=2700-lambda_spw=0.1-lambda_snh=450-lambda_inh=0.58 0.881
stan-k=2500-sample_size=1500-lambda_spw=0.15-lambda_snh=250-lambda_inh=0.57 0.882
stan-k=570-sample_size=1000-lambda_spw=0.81-lambda_snh=350-lambda_inh=0.58 0.882
stan-k=2500-sample_size=2700-lambda_spw=0.16-lambda_snh=530-lambda_inh=7 0.877
stan-k=530-sample_size=2000-lambda_spw=0.1-lambda_snh=400-lambda_inh=0.57 0.874
stan-k=750-sample_size=1000-lambda_spw=0.6-lambda_snh=450-lambda_inh=0.51 0.886
stan-k=1500-sample_size=2800-lambda_spw=0.16-lambda_snh=10-lambda_inh=0.56 0.890
stan-k=570-sample_size=2650-lambda_spw=0.12-lambda_snh=530-lambda_inh=9 0.870
stan-k=5000-sample_size=2500-lambda_spw=0.15-lambda_snh=500-lambda_inh=1.5 0.878
stan-k=700-sample_size=2650-lambda_spw=0.81-lambda_snh=530-lambda_inh=20 0.882
stan-k=570-sample_size=1000-lambda_spw=0.16-lambda_snh=100-lambda_inh=0.56 0.884
stan-k=4000-sample_size=3000-lambda_spw=0.4-lambda_snh=450-lambda_inh=1.5 0.880
stan-k=630-sample_size=1500-lambda_spw=0.13-lambda_snh=200-lambda_inh=0.56 0.878
stan-k=2000-sample_size=3000-lambda_spw=0.35-lambda_snh=100-lambda_inh=2 0.881
stan-k=510-sample_size=1000-lambda_spw=0.6-lambda_snh=50-lambda_inh=0.51 0.888
stan-k=570-sample_size=2800-lambda_spw=0.6-lambda_snh=10-lambda_inh=1.5 0.893
stan-k=630-sample_size=2550-lambda_spw=0.81-lambda_snh=25-lambda_inh=6 0.891
stan-k=4000-sample_size=2900-lambda_spw=0.13-lambda_snh=400-lambda_inh=9 0.876
stan-k=4500-sample_size=2000-lambda_spw=0.4-lambda_snh=350-lambda_inh=0.55 0.882
stan-k=510-sample_size=2800-lambda_spw=0.81-lambda_snh=530-lambda_inh=6 0.874
stan-k=5500-sample_size=2800-lambda_spw=0.81-lambda_snh=300-lambda_inh=2 0.884
stan-k=6000-sample_size=500-lambda_spw=0.4-lambda_snh=250-lambda_inh=20 0.881
stan-k=2000-sample_size=1000-lambda_spw=0.15-lambda_snh=300-lambda_inh=15 0.878
stan-k=750-sample_size=2650-lambda_spw=0.13-lambda_snh=300-lambda_inh=0.56 0.878
stan-k=5000-sample_size=2500-lambda_spw=0.15-lambda_snh=300-lambda_inh=5 0.877
stan-k=2500-sample_size=2800-lambda_spw=0.35-lambda_snh=500-lambda_inh=0.58 0.882
stan-k=5000-sample_size=1000-lambda_spw=0.16-lambda_snh=50-lambda_inh=2 0.881
stan-k=700-sample_size=2500-lambda_spw=0.1-lambda_snh=25-lambda_inh=20 0.881
stan-k=3000-sample_size=1500-lambda_spw=0.35-lambda_snh=600-lambda_inh=15 0.880
stan-k=2500-sample_size=2800-lambda_spw=0.6-lambda_snh=470-lambda_inh=2 0.884
stan-k=2500-sample_size=2500-lambda_spw=0.12-lambda_snh=300-lambda_inh=0.52 0.881
stan-k=4500-sample_size=3000-lambda_spw=0.17-lambda_snh=400-lambda_inh=0.58 0.882
stan-k=6000-sample_size=2700-lambda_spw=0.1-lambda_snh=400-lambda_inh=0.56 0.881
stan-k=2800-sample_size=3000-lambda_spw=0.13-lambda_snh=50-lambda_inh=0.54 0.885
stan-k=2800-sample_size=500-lambda_spw=0.6-lambda_snh=10-lambda_inh=0.58 0.895
stan-k=5000-sample_size=2550-lambda_spw=0.81-lambda_snh=10-lambda_inh=20 0.898
stan-k=3500-sample_size=2700-lambda_spw=0.17-lambda_snh=25-lambda_inh=0.52 0.887
stan-k=4500-sample_size=2550-lambda_spw=0.35-lambda_snh=10-lambda_inh=2 0.887
stan-k=3000-sample_size=2650-lambda_spw=0.14-lambda_snh=150-lambda_inh=15 0.877
stan-k=4000-sample_size=2800-lambda_spw=0.13-lambda_snh=450-lambda_inh=0.53 0.881
stan-k=1500-sample_size=2500-lambda_spw=0.6-lambda_snh=500-lambda_inh=0.56 0.885
stan-k=3500-sample_size=2550-lambda_spw=0.7-lambda_snh=530-lambda_inh=0.51 0.887
stan-k=4000-sample_size=1500-lambda_spw=0.7-lambda_snh=250-lambda_inh=5 0.886
stan-k=530-sample_size=2550-lambda_spw=0.35-lambda_snh=450-lambda_inh=0.55 0.875
stan-k=700-sample_size=1000-lambda_spw=0.6-lambda_snh=250-lambda_inh=0.51 0.888
stan-k=1500-sample_size=2500-lambda_spw=0.12-lambda_snh=520-lambda_inh=0.56 0.881
stan-k=530-sample_size=2900-lambda_spw=0.15-lambda_snh=500-lambda_inh=5 0.869
stan-k=2800-sample_size=1500-lambda_spw=0.6-lambda_snh=520-lambda_inh=0.55 0.886
stan-k=510-sample_size=2650-lambda_spw=0.12-lambda_snh=450-lambda_inh=0.54 0.873
stan-k=2500-sample_size=3000-lambda_spw=0.4-lambda_snh=300-lambda_inh=9 0.880
stan-k=630-sample_size=1500-lambda_spw=0.6-lambda_snh=450-lambda_inh=6 0.876
stan-k=5000-sample_size=2700-lambda_spw=0.81-lambda_snh=250-lambda_inh=0.52 0.885
stan-k=5500-sample_size=2550-lambda_spw=0.16-lambda_snh=520-lambda_inh=2 0.877
stan-k=510-sample_size=3000-lambda_spw=0.15-lambda_snh=100-lambda_inh=5 0.879
stan-k=5500-sample_size=2800-lambda_spw=0.35-lambda_snh=25-lambda_inh=0.57 0.888
stan-k=510-sample_size=2800-lambda_spw=0.4-lambda_snh=500-lambda_inh=0.55 0.874
stan-k=600-sample_size=2700-lambda_spw=0.7-lambda_snh=250-lambda_inh=2 0.879
stan-k=570-sample_size=2800-lambda_spw=0.81-lambda_snh=100-lambda_inh=0.5 0.888
stan-k=4500-sample_size=1000-lambda_spw=0.6-lambda_snh=50-lambda_inh=5 0.887
stan-k=3000-sample_size=2550-lambda_spw=0.6-lambda_snh=300-lambda_inh=0.58 0.887
stan-k=700-sample_size=2550-lambda_spw=0.17-lambda_snh=25-lambda_inh=0.57 0.887
stan-k=750-sample_size=2500-lambda_spw=0.17-lambda_snh=500-lambda_inh=0.57 0.877
stan-k=510-sample_size=2900-lambda_spw=0.81-lambda_snh=520-lambda_inh=5 0.874
stan-k=6000-sample_size=2500-lambda_spw=0.16-lambda_snh=400-lambda_inh=0.55 0.882
stan-k=700-sample_size=2800-lambda_spw=0.16-lambda_snh=10-lambda_inh=0.5 0.889
stan-k=5500-sample_size=3000-lambda_spw=0.35-lambda_snh=100-lambda_inh=0.55 0.883
stan-k=5500-sample_size=2500-lambda_spw=0.12-lambda_snh=50-lambda_inh=9 0.878
stan-k=3500-sample_size=2900-lambda_spw=0.6-lambda_snh=150-lambda_inh=15 0.884
stan-k=2000-sample_size=2800-lambda_spw=0.13-lambda_snh=50-lambda_inh=9 0.878
stan-k=2500-sample_size=2650-lambda_spw=0.15-lambda_snh=25-lambda_inh=1 0.885
stan-k=6000-sample_size=1500-lambda_spw=0.35-lambda_snh=200-lambda_inh=0.51 0.883
stan-k=2500-sample_size=3000-lambda_spw=0.17-lambda_snh=600-lambda_inh=9 0.877
stan-k=510-sample_size=2650-lambda_spw=0.81-lambda_snh=25-lambda_inh=1 0.895
stan-k=5000-sample_size=500-lambda_spw=0.13-lambda_snh=530-lambda_inh=2 0.881
stan-k=5000-sample_size=3000-lambda_spw=0.81-lambda_snh=500-lambda_inh=2 0.884
stan-k=5000-sample_size=1500-lambda_spw=0.12-lambda_snh=450-lambda_inh=0.57 0.881
stan-k=4500-sample_size=2550-lambda_spw=0.4-lambda_snh=150-lambda_inh=2 0.881
stan-k=6000-sample_size=2000-lambda_spw=0.17-lambda_snh=400-lambda_inh=0.56 0.882
stan-k=530-sample_size=2800-lambda_spw=0.17-lambda_snh=200-lambda_inh=0.55 0.879
stan-k=600-sample_size=500-lambda_spw=0.15-lambda_snh=520-lambda_inh=15 0.878
stan-k=5000-sample_size=1500-lambda_spw=0.17-lambda_snh=10-lambda_inh=9 0.885
stan-k=630-sample_size=2000-lambda_spw=0.12-lambda_snh=520-lambda_inh=6 0.872
stan-k=570-sample_size=2650-lambda_spw=0.17-lambda_snh=530-lambda_inh=7 0.870
stan-k=4500-sample_size=2650-lambda_spw=0.14-lambda_snh=500-lambda_inh=0.57 0.881
stan-k=6000-sample_size=2900-lambda_spw=0.1-lambda_snh=450-lambda_inh=0.53 0.881
stan-k=4500-sample_size=2000-lambda_spw=0.13-lambda_snh=600-lambda_inh=7 0.877
stan-k=570-sample_size=2800-lambda_spw=0.15-lambda_snh=250-lambda_inh=1.5 0.874
stan-k=4500-sample_size=2900-lambda_spw=0.12-lambda_snh=200-lambda_inh=0.54 0.881
stan-k=5500-sample_size=2550-lambda_spw=0.12-lambda_snh=520-lambda_inh=9 0.876
stan-k=630-sample_size=2700-lambda_spw=0.14-lambda_snh=520-lambda_inh=0.57 0.875
stan-k=5500-sample_size=3000-lambda_spw=0.4-lambda_snh=50-lambda_inh=0.51 0.886

Hyperparameters for VSTAN

We tested the following hyperparameter space:

Parameter Options
Number of Neighbors [50, 100, 500, 600, 700, 800, 1000, 1300, 1500, 1700, 2000, 2500, 2800, 3000]
Sample Size [500, 600, 800, 1000, 1800, 2500, 2200, 4000, 5000, 7000, 8000, 10000]
lambda_spw [0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.11, 0.12, 0.101, 0.102, 0.103, 0.104, 0.105, 0.106, 0.107, 0.108, 0.15, 0.16, 1.2, 1.8, 2.4]
lambda_snh [50,51, 55, 57, 71, 75, 80, 100, 150, 200, 400, 450, 470, 500, 520, 530, 600]
lambda_inh [0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 1.8, 2, 2.4, 2.5, 2.8, 3, 3.5, 3.8, 4]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.380
  • Standard deviation: 0.003
  • Maximum value: 0.384
  • Minimum value: 0.371
Parameters/Metrics MRR@20
vstan-k=2000-sample_size=5400-lambda_spw=0.99-lambda_snh=250-lambda_inh=3.8-lambda_idf=12 0.378
vstan-k=1550-sample_size=5550-lambda_spw=0.107-lambda_snh=58-lambda_inh=3.4-lambda_idf=1 0.383
vstan-k=1000-sample_size=5600-lambda_spw=0.94-lambda_snh=51-lambda_inh=3.9-lambda_idf=1 0.380
vstan-k=3000-sample_size=5550-lambda_spw=0.108-lambda_snh=250-lambda_inh=3.9-lambda_idf=13 0.382
vstan-k=1550-sample_size=6000-lambda_spw=0.97-lambda_snh=58-lambda_inh=2.4-lambda_idf=15 0.378
vstan-k=1530-sample_size=5900-lambda_spw=0.92-lambda_snh=350-lambda_inh=1.8-lambda_idf=8 0.377
vstan-k=1500-sample_size=5400-lambda_spw=0.91-lambda_snh=55-lambda_inh=3.8-lambda_idf=2 0.380
vstan-k=3000-sample_size=5900-lambda_spw=0.97-lambda_snh=500-lambda_inh=3.9-lambda_idf=10 0.377
vstan-k=1000-sample_size=5500-lambda_spw=0.99-lambda_snh=500-lambda_inh=3.8-lambda_idf=14 0.377
vstan-k=2500-sample_size=5550-lambda_spw=0.105-lambda_snh=400-lambda_inh=1.3-lambda_idf=4 0.381
vstan-k=1600-sample_size=5750-lambda_spw=0.91-lambda_snh=200-lambda_inh=3.4-lambda_idf=8 0.378
vstan-k=1600-sample_size=5400-lambda_spw=0.102-lambda_snh=56-lambda_inh=1.5-lambda_idf=9 0.383
vstan-k=1200-sample_size=5400-lambda_spw=0.96-lambda_snh=58-lambda_inh=0.51-lambda_idf=3 0.373
vstan-k=1200-sample_size=5750-lambda_spw=0.94-lambda_snh=400-lambda_inh=1.8-lambda_idf=1 0.376
vstan-k=1200-sample_size=5500-lambda_spw=0.108-lambda_snh=300-lambda_inh=3.8-lambda_idf=12 0.382
vstan-k=1520-sample_size=5800-lambda_spw=0.91-lambda_snh=200-lambda_inh=1.8-lambda_idf=8 0.376
vstan-k=1550-sample_size=5900-lambda_spw=0.108-lambda_snh=58-lambda_inh=3.4-lambda_idf=15 0.383
vstan-k=1000-sample_size=5500-lambda_spw=0.104-lambda_snh=56-lambda_inh=1.5-lambda_idf=7 0.383
vstan-k=1570-sample_size=5750-lambda_spw=0.103-lambda_snh=56-lambda_inh=3.8-lambda_idf=5 0.383
vstan-k=2000-sample_size=5650-lambda_spw=0.91-lambda_snh=56-lambda_inh=2.4-lambda_idf=4 0.378
vstan-k=1570-sample_size=5600-lambda_spw=0.106-lambda_snh=400-lambda_inh=1.3-lambda_idf=5 0.381
vstan-k=2000-sample_size=6000-lambda_spw=0.107-lambda_snh=59-lambda_inh=3.8-lambda_idf=6 0.383
vstan-k=1520-sample_size=6000-lambda_spw=0.101-lambda_snh=200-lambda_inh=1.3-lambda_idf=12 0.382
vstan-k=2500-sample_size=5600-lambda_spw=0.107-lambda_snh=250-lambda_inh=1.5-lambda_idf=1 0.381
vstan-k=1560-sample_size=6000-lambda_spw=0.99-lambda_snh=55-lambda_inh=3.4-lambda_idf=9 0.379
vstan-k=1500-sample_size=5600-lambda_spw=0.96-lambda_snh=300-lambda_inh=1.8-lambda_idf=5 0.376
vstan-k=1500-sample_size=5600-lambda_spw=0.93-lambda_snh=200-lambda_inh=3.4-lambda_idf=7 0.378
vstan-k=1510-sample_size=5400-lambda_spw=0.96-lambda_snh=450-lambda_inh=3.4-lambda_idf=7 0.378
vstan-k=1550-sample_size=5750-lambda_spw=0.92-lambda_snh=300-lambda_inh=1.8-lambda_idf=14 0.376
vstan-k=1520-sample_size=5800-lambda_spw=0.92-lambda_snh=500-lambda_inh=1.3-lambda_idf=11 0.374
vstan-k=2000-sample_size=5600-lambda_spw=0.99-lambda_snh=50-lambda_inh=3.8-lambda_idf=15 0.379
vstan-k=2000-sample_size=5500-lambda_spw=0.104-lambda_snh=53-lambda_inh=2.4-lambda_idf=1 0.384
vstan-k=1600-sample_size=5550-lambda_spw=0.108-lambda_snh=450-lambda_inh=0.51-lambda_idf=13 0.379
vstan-k=1570-sample_size=5550-lambda_spw=0.106-lambda_snh=500-lambda_inh=3.8-lambda_idf=12 0.381
vstan-k=2500-sample_size=5500-lambda_spw=0.101-lambda_snh=57-lambda_inh=3.8-lambda_idf=2 0.383
vstan-k=2500-sample_size=6000-lambda_spw=0.106-lambda_snh=400-lambda_inh=2.4-lambda_idf=13 0.382
vstan-k=3000-sample_size=5650-lambda_spw=0.94-lambda_snh=53-lambda_inh=0.51-lambda_idf=9 0.374
vstan-k=3000-sample_size=5550-lambda_spw=0.92-lambda_snh=56-lambda_inh=2.4-lambda_idf=10 0.378
vstan-k=1520-sample_size=5650-lambda_spw=0.11-lambda_snh=53-lambda_inh=3.9-lambda_idf=5 0.383
vstan-k=1500-sample_size=5600-lambda_spw=0.109-lambda_snh=55-lambda_inh=3.4-lambda_idf=1 0.384
vstan-k=2500-sample_size=5650-lambda_spw=0.108-lambda_snh=58-lambda_inh=1.8-lambda_idf=15 0.384
vstan-k=1400-sample_size=5600-lambda_spw=0.97-lambda_snh=200-lambda_inh=3.9-lambda_idf=3 0.378
vstan-k=3000-sample_size=5600-lambda_spw=0.101-lambda_snh=54-lambda_inh=1.3-lambda_idf=10 0.383
vstan-k=1530-sample_size=5550-lambda_spw=0.92-lambda_snh=53-lambda_inh=3.9-lambda_idf=14 0.379
vstan-k=2000-sample_size=5600-lambda_spw=0.106-lambda_snh=400-lambda_inh=2.4-lambda_idf=8 0.382
vstan-k=1570-sample_size=5550-lambda_spw=0.94-lambda_snh=55-lambda_inh=1.5-lambda_idf=4 0.377
vstan-k=3000-sample_size=5550-lambda_spw=0.104-lambda_snh=53-lambda_inh=3.9-lambda_idf=6 0.383
vstan-k=1550-sample_size=5600-lambda_spw=0.108-lambda_snh=400-lambda_inh=3.9-lambda_idf=11 0.381
vstan-k=1550-sample_size=5400-lambda_spw=0.108-lambda_snh=500-lambda_inh=2.4-lambda_idf=4 0.382
vstan-k=2500-sample_size=5900-lambda_spw=0.91-lambda_snh=57-lambda_inh=1.5-lambda_idf=10 0.377
vstan-k=1550-sample_size=5650-lambda_spw=0.96-lambda_snh=350-lambda_inh=1.5-lambda_idf=6 0.375
vstan-k=1530-sample_size=5800-lambda_spw=0.96-lambda_snh=450-lambda_inh=1.3-lambda_idf=2 0.375
vstan-k=1550-sample_size=6000-lambda_spw=0.108-lambda_snh=400-lambda_inh=1.8-lambda_idf=13 0.382
vstan-k=2500-sample_size=5800-lambda_spw=0.93-lambda_snh=450-lambda_inh=1.5-lambda_idf=9 0.375
vstan-k=1550-sample_size=6000-lambda_spw=0.107-lambda_snh=350-lambda_inh=3.4-lambda_idf=11 0.382
vstan-k=1540-sample_size=5650-lambda_spw=0.102-lambda_snh=54-lambda_inh=1.8-lambda_idf=13 0.384
vstan-k=1000-sample_size=5400-lambda_spw=0.104-lambda_snh=52-lambda_inh=1.8-lambda_idf=10 0.384
vstan-k=1600-sample_size=5750-lambda_spw=0.11-lambda_snh=55-lambda_inh=2.4-lambda_idf=13 0.384
vstan-k=1520-sample_size=5500-lambda_spw=0.109-lambda_snh=60-lambda_inh=1.3-lambda_idf=15 0.383
vstan-k=1540-sample_size=5500-lambda_spw=0.109-lambda_snh=450-lambda_inh=3.8-lambda_idf=2 0.382
vstan-k=1550-sample_size=5900-lambda_spw=0.94-lambda_snh=52-lambda_inh=1.3-lambda_idf=9 0.377
vstan-k=1000-sample_size=5400-lambda_spw=0.106-lambda_snh=350-lambda_inh=1.3-lambda_idf=1 0.381
vstan-k=1600-sample_size=5600-lambda_spw=0.101-lambda_snh=53-lambda_inh=1.3-lambda_idf=4 0.383
vstan-k=1400-sample_size=5500-lambda_spw=0.94-lambda_snh=500-lambda_inh=0.51-lambda_idf=2 0.371
vstan-k=1200-sample_size=5650-lambda_spw=0.109-lambda_snh=53-lambda_inh=1.5-lambda_idf=10 0.384
vstan-k=1550-sample_size=6000-lambda_spw=0.103-lambda_snh=400-lambda_inh=1.8-lambda_idf=9 0.382
vstan-k=1550-sample_size=5650-lambda_spw=0.95-lambda_snh=350-lambda_inh=1.5-lambda_idf=4 0.375
vstan-k=2500-sample_size=5550-lambda_spw=0.102-lambda_snh=52-lambda_inh=0.51-lambda_idf=15 0.382
vstan-k=1500-sample_size=5650-lambda_spw=0.109-lambda_snh=58-lambda_inh=1.3-lambda_idf=13 0.383
vstan-k=1550-sample_size=5750-lambda_spw=0.96-lambda_snh=55-lambda_inh=2.4-lambda_idf=15 0.378
vstan-k=1570-sample_size=5600-lambda_spw=0.96-lambda_snh=57-lambda_inh=3.4-lambda_idf=11 0.379
vstan-k=2500-sample_size=5800-lambda_spw=0.106-lambda_snh=58-lambda_inh=0.51-lambda_idf=2 0.381
vstan-k=1510-sample_size=5400-lambda_spw=0.96-lambda_snh=350-lambda_inh=1.5-lambda_idf=7 0.375
vstan-k=3000-sample_size=5400-lambda_spw=0.98-lambda_snh=250-lambda_inh=1.5-lambda_idf=1 0.375
vstan-k=1200-sample_size=5650-lambda_spw=0.98-lambda_snh=53-lambda_inh=3.4-lambda_idf=8 0.379
vstan-k=1550-sample_size=5400-lambda_spw=0.96-lambda_snh=56-lambda_inh=2.4-lambda_idf=2 0.378
vstan-k=1520-sample_size=5400-lambda_spw=0.102-lambda_snh=54-lambda_inh=1.3-lambda_idf=3 0.383
vstan-k=1520-sample_size=5600-lambda_spw=0.93-lambda_snh=59-lambda_inh=3.9-lambda_idf=3 0.379
vstan-k=1560-sample_size=5400-lambda_spw=0.93-lambda_snh=200-lambda_inh=0.51-lambda_idf=14 0.372
vstan-k=1560-sample_size=5500-lambda_spw=0.104-lambda_snh=50-lambda_inh=0.51-lambda_idf=8 0.380
vstan-k=3000-sample_size=5400-lambda_spw=0.99-lambda_snh=54-lambda_inh=2.4-lambda_idf=7 0.378
vstan-k=1530-sample_size=5900-lambda_spw=0.94-lambda_snh=55-lambda_inh=3.4-lambda_idf=11 0.379
vstan-k=3000-sample_size=5400-lambda_spw=0.101-lambda_snh=54-lambda_inh=3.8-lambda_idf=1 0.383
vstan-k=1550-sample_size=5800-lambda_spw=0.93-lambda_snh=54-lambda_inh=0.51-lambda_idf=9 0.373
vstan-k=1510-sample_size=5900-lambda_spw=0.99-lambda_snh=59-lambda_inh=3.4-lambda_idf=15 0.379
vstan-k=1600-sample_size=5650-lambda_spw=0.102-lambda_snh=500-lambda_inh=1.5-lambda_idf=5 0.380
vstan-k=1000-sample_size=5400-lambda_spw=0.101-lambda_snh=300-lambda_inh=1.5-lambda_idf=9 0.381
vstan-k=1400-sample_size=5500-lambda_spw=0.94-lambda_snh=54-lambda_inh=1.5-lambda_idf=3 0.377
vstan-k=1600-sample_size=5500-lambda_spw=0.103-lambda_snh=53-lambda_inh=3.9-lambda_idf=9 0.383
vstan-k=1550-sample_size=5600-lambda_spw=0.107-lambda_snh=54-lambda_inh=3.8-lambda_idf=12 0.384
vstan-k=1550-sample_size=6000-lambda_spw=0.93-lambda_snh=55-lambda_inh=3.8-lambda_idf=10 0.379
vstan-k=1600-sample_size=5750-lambda_spw=0.95-lambda_snh=50-lambda_inh=2.4-lambda_idf=13 0.379
vstan-k=1550-sample_size=5500-lambda_spw=0.98-lambda_snh=400-lambda_inh=1.5-lambda_idf=7 0.375
vstan-k=1510-sample_size=5600-lambda_spw=0.106-lambda_snh=400-lambda_inh=3.4-lambda_idf=8 0.382
vstan-k=1000-sample_size=5400-lambda_spw=0.92-lambda_snh=350-lambda_inh=1.3-lambda_idf=15 0.375
vstan-k=1500-sample_size=5500-lambda_spw=0.104-lambda_snh=54-lambda_inh=1.8-lambda_idf=13 0.384
vstan-k=3000-sample_size=5900-lambda_spw=0.94-lambda_snh=57-lambda_inh=1.5-lambda_idf=13 0.377
vstan-k=1500-sample_size=5750-lambda_spw=0.99-lambda_snh=55-lambda_inh=3.8-lambda_idf=1 0.379
vstan-k=1570-sample_size=5900-lambda_spw=0.106-lambda_snh=400-lambda_inh=2.4-lambda_idf=11 0.382
vstan-k=1540-sample_size=5400-lambda_spw=0.98-lambda_snh=53-lambda_inh=2.4-lambda_idf=14 0.378
vstan-k=1500-sample_size=5500-lambda_spw=0.11-lambda_snh=25-lambda_inh=3.9-lambda_idf=15 0.385

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.284
  • Standard deviation: 0.003
  • Maximum value: 0.293
  • Minimum value: 0.282
Parameters/Metrics MRR@20
vstan-k=2500-sample_size=6000-lambda_spw=0.95-lambda_snh=50-lambda_inh=3.4-lambda_idf=3 0.290
vstan-k=1200-sample_size=5650-lambda_spw=0.91-lambda_snh=350-lambda_inh=3.9-lambda_idf=13 0.290
vstan-k=1510-sample_size=5400-lambda_spw=0.106-lambda_snh=53-lambda_inh=1.3-lambda_idf=14 0.287
vstan-k=1200-sample_size=5550-lambda_spw=0.93-lambda_snh=55-lambda_inh=3.8-lambda_idf=6 0.290
vstan-k=1550-sample_size=5500-lambda_spw=0.99-lambda_snh=52-lambda_inh=3.8-lambda_idf=9 0.290
vstan-k=1000-sample_size=5500-lambda_spw=0.109-lambda_snh=300-lambda_inh=1.5-lambda_idf=1 0.287
vstan-k=1000-sample_size=6000-lambda_spw=0.93-lambda_snh=54-lambda_inh=3.8-lambda_idf=15 0.290
vstan-k=1500-sample_size=5900-lambda_spw=0.96-lambda_snh=54-lambda_inh=0.51-lambda_idf=14 0.282
vstan-k=1530-sample_size=5800-lambda_spw=0.109-lambda_snh=300-lambda_inh=3.4-lambda_idf=14 0.285
vstan-k=1520-sample_size=5600-lambda_spw=0.106-lambda_snh=200-lambda_inh=3.9-lambda_idf=4 0.286
vstan-k=3000-sample_size=6000-lambda_spw=0.91-lambda_snh=52-lambda_inh=1.5-lambda_idf=2 0.290
vstan-k=1400-sample_size=5650-lambda_spw=0.95-lambda_snh=500-lambda_inh=0.51-lambda_idf=10 0.282
vstan-k=1500-sample_size=5400-lambda_spw=0.97-lambda_snh=54-lambda_inh=3.8-lambda_idf=12 0.290
vstan-k=1540-sample_size=5500-lambda_spw=0.99-lambda_snh=56-lambda_inh=3.8-lambda_idf=14 0.290
vstan-k=1520-sample_size=5400-lambda_spw=0.92-lambda_snh=57-lambda_inh=1.3-lambda_idf=4 0.291
vstan-k=2000-sample_size=5650-lambda_spw=0.99-lambda_snh=51-lambda_inh=1.8-lambda_idf=6 0.290
vstan-k=2000-sample_size=5550-lambda_spw=0.11-lambda_snh=400-lambda_inh=3.4-lambda_idf=12 0.285
vstan-k=1000-sample_size=5600-lambda_spw=0.107-lambda_snh=52-lambda_inh=2.4-lambda_idf=5 0.285
vstan-k=2000-sample_size=6000-lambda_spw=0.105-lambda_snh=59-lambda_inh=3.4-lambda_idf=4 0.285
vstan-k=1540-sample_size=5900-lambda_spw=0.92-lambda_snh=250-lambda_inh=1.3-lambda_idf=5 0.291
vstan-k=1560-sample_size=5900-lambda_spw=0.102-lambda_snh=57-lambda_inh=1.5-lambda_idf=10 0.287
vstan-k=1530-sample_size=5400-lambda_spw=0.97-lambda_snh=56-lambda_inh=1.3-lambda_idf=1 0.291
vstan-k=2500-sample_size=5800-lambda_spw=0.99-lambda_snh=51-lambda_inh=2.4-lambda_idf=13 0.292
vstan-k=1200-sample_size=5400-lambda_spw=0.94-lambda_snh=55-lambda_inh=2.4-lambda_idf=11 0.291
vstan-k=1510-sample_size=5600-lambda_spw=0.97-lambda_snh=56-lambda_inh=1.5-lambda_idf=3 0.290
vstan-k=1540-sample_size=6000-lambda_spw=0.106-lambda_snh=59-lambda_inh=3.9-lambda_idf=5 0.286
vstan-k=1400-sample_size=5550-lambda_spw=0.109-lambda_snh=53-lambda_inh=2.4-lambda_idf=3 0.285
vstan-k=1570-sample_size=5600-lambda_spw=0.98-lambda_snh=51-lambda_inh=3.4-lambda_idf=14 0.291
vstan-k=1500-sample_size=5400-lambda_spw=0.11-lambda_snh=350-lambda_inh=3.9-lambda_idf=6 0.286
vstan-k=1400-sample_size=5800-lambda_spw=0.102-lambda_snh=450-lambda_inh=1.3-lambda_idf=5 0.288
vstan-k=1550-sample_size=5750-lambda_spw=0.101-lambda_snh=500-lambda_inh=0.51-lambda_idf=5 0.284
vstan-k=1550-sample_size=5650-lambda_spw=0.96-lambda_snh=300-lambda_inh=3.4-lambda_idf=14 0.290
vstan-k=1520-sample_size=5400-lambda_spw=0.103-lambda_snh=200-lambda_inh=1.5-lambda_idf=8 0.287
vstan-k=3000-sample_size=6000-lambda_spw=0.92-lambda_snh=60-lambda_inh=2.4-lambda_idf=15 0.291
vstan-k=1530-sample_size=5650-lambda_spw=0.107-lambda_snh=250-lambda_inh=1.8-lambda_idf=11 0.285
vstan-k=3000-sample_size=5650-lambda_spw=0.94-lambda_snh=450-lambda_inh=3.9-lambda_idf=9 0.290
vstan-k=1400-sample_size=6000-lambda_spw=0.105-lambda_snh=55-lambda_inh=1.5-lambda_idf=10 0.287
vstan-k=1550-sample_size=5650-lambda_spw=0.107-lambda_snh=55-lambda_inh=2.4-lambda_idf=15 0.286
vstan-k=1500-sample_size=5600-lambda_spw=0.95-lambda_snh=57-lambda_inh=3.8-lambda_idf=4 0.289
vstan-k=1560-sample_size=5900-lambda_spw=0.103-lambda_snh=250-lambda_inh=3.9-lambda_idf=2 0.286
vstan-k=1540-sample_size=5400-lambda_spw=0.99-lambda_snh=52-lambda_inh=3.4-lambda_idf=12 0.291
vstan-k=1530-sample_size=6000-lambda_spw=0.107-lambda_snh=300-lambda_inh=1.8-lambda_idf=9 0.285
vstan-k=1400-sample_size=5500-lambda_spw=0.101-lambda_snh=55-lambda_inh=1.8-lambda_idf=2 0.286
vstan-k=1600-sample_size=5650-lambda_spw=0.106-lambda_snh=200-lambda_inh=1.5-lambda_idf=6 0.287
vstan-k=1570-sample_size=5900-lambda_spw=0.91-lambda_snh=58-lambda_inh=3.8-lambda_idf=10 0.290
vstan-k=1550-sample_size=5550-lambda_spw=0.107-lambda_snh=50-lambda_inh=0.51-lambda_idf=7 0.284
vstan-k=2000-sample_size=5750-lambda_spw=0.105-lambda_snh=51-lambda_inh=3.8-lambda_idf=6 0.285
vstan-k=3000-sample_size=5550-lambda_spw=0.98-lambda_snh=200-lambda_inh=1.5-lambda_idf=5 0.290
vstan-k=1550-sample_size=5900-lambda_spw=0.91-lambda_snh=50-lambda_inh=3.4-lambda_idf=4 0.290
vstan-k=1600-sample_size=6000-lambda_spw=0.103-lambda_snh=350-lambda_inh=3.8-lambda_idf=9 0.286
vstan-k=1500-sample_size=5800-lambda_spw=0.101-lambda_snh=55-lambda_inh=0.51-lambda_idf=1 0.284
vstan-k=1600-sample_size=5900-lambda_spw=0.95-lambda_snh=500-lambda_inh=3.4-lambda_idf=9 0.290
vstan-k=2000-sample_size=5900-lambda_spw=0.109-lambda_snh=250-lambda_inh=1.5-lambda_idf=14 0.287
vstan-k=2000-sample_size=5400-lambda_spw=0.96-lambda_snh=500-lambda_inh=1.3-lambda_idf=9 0.291
vstan-k=1510-sample_size=5500-lambda_spw=0.99-lambda_snh=50-lambda_inh=3.8-lambda_idf=9 0.290
vstan-k=2500-sample_size=5900-lambda_spw=0.99-lambda_snh=300-lambda_inh=3.4-lambda_idf=2 0.291
vstan-k=1530-sample_size=5750-lambda_spw=0.101-lambda_snh=57-lambda_inh=3.4-lambda_idf=8 0.285
vstan-k=1550-sample_size=6000-lambda_spw=0.104-lambda_snh=57-lambda_inh=1.5-lambda_idf=8 0.287
vstan-k=1550-sample_size=5500-lambda_spw=0.93-lambda_snh=52-lambda_inh=1.3-lambda_idf=14 0.290
vstan-k=1530-sample_size=5400-lambda_spw=0.92-lambda_snh=56-lambda_inh=0.51-lambda_idf=2 0.282
vstan-k=1500-sample_size=5600-lambda_spw=0.105-lambda_snh=52-lambda_inh=3.9-lambda_idf=15 0.286
vstan-k=1510-sample_size=5650-lambda_spw=0.96-lambda_snh=56-lambda_inh=0.51-lambda_idf=7 0.282
vstan-k=1600-sample_size=5500-lambda_spw=0.99-lambda_snh=59-lambda_inh=3.9-lambda_idf=14 0.290
vstan-k=1570-sample_size=5550-lambda_spw=0.97-lambda_snh=56-lambda_inh=3.9-lambda_idf=8 0.289
vstan-k=1530-sample_size=5600-lambda_spw=0.98-lambda_snh=300-lambda_inh=2.4-lambda_idf=6 0.293
vstan-k=1400-sample_size=6000-lambda_spw=0.107-lambda_snh=200-lambda_inh=0.51-lambda_idf=3 0.284
vstan-k=2500-sample_size=5900-lambda_spw=0.102-lambda_snh=55-lambda_inh=3.8-lambda_idf=3 0.286
vstan-k=1530-sample_size=5650-lambda_spw=0.94-lambda_snh=350-lambda_inh=3.9-lambda_idf=2 0.291
vstan-k=1000-sample_size=5650-lambda_spw=0.108-lambda_snh=53-lambda_inh=3.8-lambda_idf=7 0.285
vstan-k=1530-sample_size=5500-lambda_spw=0.103-lambda_snh=350-lambda_inh=1.8-lambda_idf=2 0.286
vstan-k=1200-sample_size=5750-lambda_spw=0.99-lambda_snh=300-lambda_inh=3.4-lambda_idf=3 0.291
vstan-k=1400-sample_size=6000-lambda_spw=0.93-lambda_snh=55-lambda_inh=3.8-lambda_idf=12 0.290
vstan-k=1500-sample_size=5650-lambda_spw=0.102-lambda_snh=450-lambda_inh=1.8-lambda_idf=2 0.286
vstan-k=1520-sample_size=5500-lambda_spw=0.11-lambda_snh=57-lambda_inh=1.3-lambda_idf=11 0.287
vstan-k=1540-sample_size=5550-lambda_spw=0.94-lambda_snh=59-lambda_inh=1.5-lambda_idf=2 0.290
vstan-k=1550-sample_size=5550-lambda_spw=0.105-lambda_snh=52-lambda_inh=3.8-lambda_idf=2 0.286
vstan-k=1500-sample_size=5750-lambda_spw=0.104-lambda_snh=53-lambda_inh=1.5-lambda_idf=10 0.287
vstan-k=1570-sample_size=5550-lambda_spw=0.105-lambda_snh=200-lambda_inh=3.4-lambda_idf=10 0.285
vstan-k=2000-sample_size=5600-lambda_spw=0.103-lambda_snh=300-lambda_inh=3.4-lambda_idf=12 0.285
vstan-k=1530-sample_size=5400-lambda_spw=0.93-lambda_snh=58-lambda_inh=3.4-lambda_idf=6 0.290
vstan-k=1550-sample_size=5550-lambda_spw=0.103-lambda_snh=400-lambda_inh=1.8-lambda_idf=3 0.286
vstan-k=2000-sample_size=5650-lambda_spw=0.108-lambda_snh=59-lambda_inh=3.8-lambda_idf=1 0.286
vstan-k=1000-sample_size=5550-lambda_spw=0.108-lambda_snh=250-lambda_inh=3.4-lambda_idf=4 0.285
vstan-k=1530-sample_size=5400-lambda_spw=0.101-lambda_snh=59-lambda_inh=1.3-lambda_idf=9 0.287
vstan-k=1510-sample_size=5400-lambda_spw=0.91-lambda_snh=51-lambda_inh=1.5-lambda_idf=9 0.290
vstan-k=1500-sample_size=5550-lambda_spw=0.97-lambda_snh=450-lambda_inh=0.51-lambda_idf=5 0.282
vstan-k=3000-sample_size=5800-lambda_spw=0.91-lambda_snh=350-lambda_inh=3.9-lambda_idf=2 0.290
vstan-k=1500-sample_size=5650-lambda_spw=0.101-lambda_snh=58-lambda_inh=1.5-lambda_idf=13 0.287
vstan-k=1000-sample_size=5550-lambda_spw=0.92-lambda_snh=400-lambda_inh=3.4-lambda_idf=10 0.290
vstan-k=1550-sample_size=6000-lambda_spw=0.94-lambda_snh=350-lambda_inh=1.5-lambda_idf=1 0.290
vstan-k=1500-sample_size=5600-lambda_spw=0.107-lambda_snh=200-lambda_inh=0.51-lambda_idf=7 0.284
vstan-k=1560-sample_size=6000-lambda_spw=0.109-lambda_snh=450-lambda_inh=1.3-lambda_idf=5 0.288
vstan-k=1540-sample_size=5500-lambda_spw=0.102-lambda_snh=250-lambda_inh=1.5-lambda_idf=8 0.287
vstan-k=1550-sample_size=5400-lambda_spw=0.95-lambda_snh=56-lambda_inh=2.4-lambda_idf=1 0.293
vstan-k=1530-sample_size=5800-lambda_spw=0.109-lambda_snh=53-lambda_inh=3.4-lambda_idf=9 0.285
vstan-k=3000-sample_size=5400-lambda_spw=0.109-lambda_snh=59-lambda_inh=3.9-lambda_idf=9 0.286
vstan-k=1550-sample_size=5550-lambda_spw=0.104-lambda_snh=250-lambda_inh=1.3-lambda_idf=14 0.287
vstan-k=1200-sample_size=5600-lambda_spw=0.98-lambda_snh=58-lambda_inh=2.4-lambda_idf=7 0.292
vstan-k=1510-sample_size=5650-lambda_spw=0.101-lambda_snh=55-lambda_inh=0.51-lambda_idf=6 0.284
vstan-k=1560-sample_size=5800-lambda_spw=0.98-lambda_snh=450-lambda_inh=0.51-lambda_idf=13 0.282
vstan-k=2000-sample_size=3000-lambda_spw=0.98-lambda_snh=20-lambda_inh=2.4-lambda_idf=30 0.291

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.881
  • Standard deviation: 0.004
  • Maximum value: 0.907
  • Minimum value: 0.875
Parameters/Metrics MRR@20
vstan-k=1570-sample_size=6000-lambda_spw=0.11-lambda_snh=450-lambda_inh=0.51-lambda_idf=1 0.878
vstan-k=1000-sample_size=5600-lambda_spw=0.105-lambda_snh=58-lambda_inh=3.4-lambda_idf=5 0.881
vstan-k=1560-sample_size=5400-lambda_spw=0.97-lambda_snh=400-lambda_inh=3.4-lambda_idf=7 0.879
vstan-k=1400-sample_size=5550-lambda_spw=0.106-lambda_snh=51-lambda_inh=3.4-lambda_idf=1 0.880
vstan-k=1510-sample_size=5750-lambda_spw=0.104-lambda_snh=51-lambda_inh=3.8-lambda_idf=10 0.881
vstan-k=1530-sample_size=5550-lambda_spw=0.11-lambda_snh=54-lambda_inh=1.8-lambda_idf=4 0.881
vstan-k=1550-sample_size=5800-lambda_spw=0.99-lambda_snh=57-lambda_inh=2.4-lambda_idf=8 0.884
vstan-k=1000-sample_size=5500-lambda_spw=0.95-lambda_snh=59-lambda_inh=1.5-lambda_idf=6 0.885
vstan-k=3000-sample_size=5900-lambda_spw=0.93-lambda_snh=52-lambda_inh=3.8-lambda_idf=8 0.884
vstan-k=2000-sample_size=5650-lambda_spw=0.11-lambda_snh=53-lambda_inh=1.3-lambda_idf=8 0.881
vstan-k=1550-sample_size=5800-lambda_spw=0.91-lambda_snh=250-lambda_inh=1.5-lambda_idf=1 0.879
vstan-k=1560-sample_size=5400-lambda_spw=0.93-lambda_snh=200-lambda_inh=2.4-lambda_idf=5 0.883
vstan-k=1500-sample_size=5600-lambda_spw=0.101-lambda_snh=50-lambda_inh=2.4-lambda_idf=1 0.881
vstan-k=2000-sample_size=5750-lambda_spw=0.105-lambda_snh=54-lambda_inh=1.5-lambda_idf=3 0.881
vstan-k=1510-sample_size=5800-lambda_spw=0.104-lambda_snh=58-lambda_inh=2.4-lambda_idf=6 0.881
vstan-k=1600-sample_size=6000-lambda_spw=0.94-lambda_snh=500-lambda_inh=3.8-lambda_idf=15 0.878
vstan-k=1570-sample_size=5650-lambda_spw=0.102-lambda_snh=54-lambda_inh=3.4-lambda_idf=4 0.881
vstan-k=1530-sample_size=5650-lambda_spw=0.11-lambda_snh=52-lambda_inh=3.4-lambda_idf=14 0.881
vstan-k=1400-sample_size=5550-lambda_spw=0.105-lambda_snh=250-lambda_inh=1.5-lambda_idf=11 0.876
vstan-k=3000-sample_size=5500-lambda_spw=0.91-lambda_snh=300-lambda_inh=1.3-lambda_idf=11 0.881
vstan-k=2500-sample_size=5800-lambda_spw=0.105-lambda_snh=58-lambda_inh=3.8-lambda_idf=2 0.881
vstan-k=1550-sample_size=5750-lambda_spw=0.104-lambda_snh=51-lambda_inh=3.8-lambda_idf=11 0.881
vstan-k=3000-sample_size=5550-lambda_spw=0.91-lambda_snh=350-lambda_inh=3.8-lambda_idf=3 0.881
vstan-k=1600-sample_size=5750-lambda_spw=0.105-lambda_snh=500-lambda_inh=1.3-lambda_idf=13 0.875
vstan-k=1600-sample_size=5550-lambda_spw=0.99-lambda_snh=400-lambda_inh=3.9-lambda_idf=6 0.879
vstan-k=3000-sample_size=5600-lambda_spw=0.107-lambda_snh=450-lambda_inh=3.8-lambda_idf=3 0.878
vstan-k=1510-sample_size=5900-lambda_spw=0.95-lambda_snh=54-lambda_inh=1.3-lambda_idf=10 0.885
vstan-k=1550-sample_size=6000-lambda_spw=0.94-lambda_snh=500-lambda_inh=2.4-lambda_idf=10 0.878
vstan-k=1550-sample_size=5800-lambda_spw=0.97-lambda_snh=53-lambda_inh=3.9-lambda_idf=15 0.884
vstan-k=1200-sample_size=5650-lambda_spw=0.11-lambda_snh=53-lambda_inh=1.5-lambda_idf=5 0.881
vstan-k=1500-sample_size=5550-lambda_spw=0.11-lambda_snh=50-lambda_inh=1.5-lambda_idf=14 0.882
vstan-k=1530-sample_size=5650-lambda_spw=0.94-lambda_snh=400-lambda_inh=1.8-lambda_idf=12 0.878
vstan-k=2000-sample_size=5750-lambda_spw=0.91-lambda_snh=56-lambda_inh=3.8-lambda_idf=13 0.884
vstan-k=1500-sample_size=5400-lambda_spw=0.103-lambda_snh=60-lambda_inh=1.5-lambda_idf=3 0.881
vstan-k=1540-sample_size=5750-lambda_spw=0.11-lambda_snh=350-lambda_inh=3.9-lambda_idf=2 0.875
vstan-k=1570-sample_size=5900-lambda_spw=0.105-lambda_snh=56-lambda_inh=0.51-lambda_idf=8 0.887
vstan-k=2000-sample_size=5550-lambda_spw=0.101-lambda_snh=50-lambda_inh=3.9-lambda_idf=14 0.881
vstan-k=1600-sample_size=5900-lambda_spw=0.96-lambda_snh=57-lambda_inh=0.51-lambda_idf=15 0.887
vstan-k=3000-sample_size=6000-lambda_spw=0.108-lambda_snh=500-lambda_inh=1.5-lambda_idf=3 0.878
vstan-k=1000-sample_size=5650-lambda_spw=0.94-lambda_snh=500-lambda_inh=1.8-lambda_idf=14 0.877
vstan-k=1540-sample_size=5750-lambda_spw=0.94-lambda_snh=59-lambda_inh=1.3-lambda_idf=8 0.885
vstan-k=1200-sample_size=5500-lambda_spw=0.92-lambda_snh=56-lambda_inh=1.5-lambda_idf=6 0.885
vstan-k=2500-sample_size=6000-lambda_spw=0.103-lambda_snh=54-lambda_inh=0.51-lambda_idf=5 0.886
vstan-k=1540-sample_size=5500-lambda_spw=0.95-lambda_snh=56-lambda_inh=3.4-lambda_idf=9 0.884
vstan-k=2000-sample_size=5600-lambda_spw=0.108-lambda_snh=450-lambda_inh=0.51-lambda_idf=2 0.878
vstan-k=1540-sample_size=5650-lambda_spw=0.101-lambda_snh=300-lambda_inh=3.4-lambda_idf=3 0.876
vstan-k=1510-sample_size=5400-lambda_spw=0.93-lambda_snh=55-lambda_inh=3.9-lambda_idf=15 0.884
vstan-k=1500-sample_size=5500-lambda_spw=0.104-lambda_snh=500-lambda_inh=1.5-lambda_idf=8 0.875
vstan-k=1550-sample_size=5550-lambda_spw=0.98-lambda_snh=53-lambda_inh=1.5-lambda_idf=3 0.885
vstan-k=1500-sample_size=5500-lambda_spw=0.99-lambda_snh=52-lambda_inh=1.5-lambda_idf=11 0.885
vstan-k=2000-sample_size=5500-lambda_spw=0.95-lambda_snh=55-lambda_inh=3.9-lambda_idf=10 0.884
vstan-k=1540-sample_size=5750-lambda_spw=0.92-lambda_snh=56-lambda_inh=1.5-lambda_idf=14 0.885
vstan-k=2000-sample_size=5650-lambda_spw=0.98-lambda_snh=52-lambda_inh=0.51-lambda_idf=5 0.887
vstan-k=1200-sample_size=5800-lambda_spw=0.92-lambda_snh=51-lambda_inh=3.9-lambda_idf=10 0.884
vstan-k=1550-sample_size=5800-lambda_spw=0.93-lambda_snh=500-lambda_inh=0.51-lambda_idf=8 0.880
vstan-k=1500-sample_size=5800-lambda_spw=0.98-lambda_snh=56-lambda_inh=1.8-lambda_idf=9 0.884
vstan-k=1400-sample_size=5550-lambda_spw=0.97-lambda_snh=59-lambda_inh=0.51-lambda_idf=1 0.887
vstan-k=1500-sample_size=5600-lambda_spw=0.91-lambda_snh=55-lambda_inh=3.9-lambda_idf=1 0.883
vstan-k=1500-sample_size=5500-lambda_spw=0.91-lambda_snh=450-lambda_inh=1.3-lambda_idf=15 0.878
vstan-k=1600-sample_size=5900-lambda_spw=0.101-lambda_snh=50-lambda_inh=3.9-lambda_idf=1 0.881
vstan-k=1000-sample_size=5900-lambda_spw=0.106-lambda_snh=300-lambda_inh=0.51-lambda_idf=11 0.877
vstan-k=1400-sample_size=5550-lambda_spw=0.91-lambda_snh=52-lambda_inh=1.5-lambda_idf=3 0.885
vstan-k=1600-sample_size=5650-lambda_spw=0.97-lambda_snh=350-lambda_inh=3.4-lambda_idf=5 0.879
vstan-k=2500-sample_size=6000-lambda_spw=0.95-lambda_snh=53-lambda_inh=2.4-lambda_idf=13 0.884
vstan-k=1600-sample_size=5500-lambda_spw=0.96-lambda_snh=400-lambda_inh=0.51-lambda_idf=11 0.881
vstan-k=1550-sample_size=5650-lambda_spw=0.96-lambda_snh=55-lambda_inh=2.4-lambda_idf=11 0.884
vstan-k=1600-sample_size=5800-lambda_spw=0.95-lambda_snh=350-lambda_inh=0.51-lambda_idf=6 0.881
vstan-k=2500-sample_size=5400-lambda_spw=0.99-lambda_snh=59-lambda_inh=1.5-lambda_idf=9 0.885
vstan-k=1530-sample_size=5750-lambda_spw=0.11-lambda_snh=59-lambda_inh=3.4-lambda_idf=3 0.880
vstan-k=1540-sample_size=5800-lambda_spw=0.104-lambda_snh=52-lambda_inh=1.5-lambda_idf=3 0.881
vstan-k=3000-sample_size=5550-lambda_spw=0.11-lambda_snh=500-lambda_inh=1.5-lambda_idf=13 0.878
vstan-k=1510-sample_size=5800-lambda_spw=0.105-lambda_snh=59-lambda_inh=3.8-lambda_idf=15 0.881
vstan-k=3000-sample_size=5600-lambda_spw=0.105-lambda_snh=60-lambda_inh=1.8-lambda_idf=10 0.880
vstan-k=1400-sample_size=5750-lambda_spw=0.106-lambda_snh=300-lambda_inh=3.8-lambda_idf=9 0.877
vstan-k=1550-sample_size=5900-lambda_spw=0.105-lambda_snh=300-lambda_inh=1.8-lambda_idf=14 0.876
vstan-k=1560-sample_size=5750-lambda_spw=0.96-lambda_snh=57-lambda_inh=0.51-lambda_idf=14 0.887
vstan-k=1540-sample_size=5650-lambda_spw=0.107-lambda_snh=500-lambda_inh=0.51-lambda_idf=8 0.879
vstan-k=1540-sample_size=5600-lambda_spw=0.104-lambda_snh=55-lambda_inh=1.8-lambda_idf=9 0.881
vstan-k=2500-sample_size=5600-lambda_spw=0.101-lambda_snh=500-lambda_inh=1.3-lambda_idf=6 0.875
vstan-k=2000-sample_size=5800-lambda_spw=0.107-lambda_snh=56-lambda_inh=2.4-lambda_idf=4 0.881
vstan-k=1200-sample_size=5800-lambda_spw=0.108-lambda_snh=52-lambda_inh=3.4-lambda_idf=12 0.881
vstan-k=1400-sample_size=5600-lambda_spw=0.106-lambda_snh=350-lambda_inh=3.9-lambda_idf=3 0.877
vstan-k=1200-sample_size=5400-lambda_spw=0.99-lambda_snh=350-lambda_inh=1.5-lambda_idf=14 0.877
vstan-k=1600-sample_size=5400-lambda_spw=0.92-lambda_snh=500-lambda_inh=1.8-lambda_idf=6 0.878
vstan-k=3000-sample_size=5550-lambda_spw=0.102-lambda_snh=300-lambda_inh=3.4-lambda_idf=13 0.878
vstan-k=3000-sample_size=5900-lambda_spw=0.97-lambda_snh=60-lambda_inh=1.3-lambda_idf=6 0.885
vstan-k=2500-sample_size=5800-lambda_spw=0.97-lambda_snh=54-lambda_inh=1.3-lambda_idf=9 0.885
vstan-k=1510-sample_size=6000-lambda_spw=0.94-lambda_snh=51-lambda_inh=3.4-lambda_idf=15 0.884
vstan-k=2000-sample_size=5500-lambda_spw=0.107-lambda_snh=200-lambda_inh=3.8-lambda_idf=12 0.878
vstan-k=1520-sample_size=5650-lambda_spw=0.109-lambda_snh=300-lambda_inh=3.8-lambda_idf=8 0.875
vstan-k=1530-sample_size=5400-lambda_spw=0.102-lambda_snh=500-lambda_inh=3.9-lambda_idf=12 0.875
vstan-k=1510-sample_size=5500-lambda_spw=0.93-lambda_snh=56-lambda_inh=1.5-lambda_idf=5 0.885
vstan-k=1540-sample_size=5650-lambda_spw=0.93-lambda_snh=60-lambda_inh=2.4-lambda_idf=5 0.884
vstan-k=1540-sample_size=5800-lambda_spw=0.108-lambda_snh=54-lambda_inh=2.4-lambda_idf=11 0.881
vstan-k=3000-sample_size=5600-lambda_spw=0.109-lambda_snh=500-lambda_inh=2.4-lambda_idf=10 0.878
vstan-k=1540-sample_size=5900-lambda_spw=0.93-lambda_snh=58-lambda_inh=1.5-lambda_idf=2 0.885
vstan-k=1510-sample_size=5750-lambda_spw=0.107-lambda_snh=54-lambda_inh=3.4-lambda_idf=11 0.881
vstan-k=1540-sample_size=5800-lambda_spw=0.93-lambda_snh=53-lambda_inh=1.3-lambda_idf=11 0.885
vstan-k=2000-sample_size=5750-lambda_spw=0.98-lambda_snh=51-lambda_inh=3.4-lambda_idf=8 0.884
vstan-k=1550-sample_size=5500-lambda_spw=0.104-lambda_snh=50-lambda_inh=1.5-lambda_idf=13 0.882
vstan-k=150-sample_size=190-lambda_spw=11.206-lambda_snh=5-lambda_inh=3.12-lambda_idf=1 0.907

Hyperparameters for SFSKNN

We tested the following hyperparameter space:

Parameter Options
Number of Neighbors [50, 100, 500, 600, 700, 800, 1000, 1300, 1400, 1500, 1700, 2000, 2500, 2800, 3000]
Sample Size [500, 600, 1000, 1100, 2500, 1900, 5000, 7000, 8000, 10000]
Similarity [tanimoto, binary, cosine]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.369
  • Standard deviation: 0.003
  • Maximum value: 0.371
  • Minimum value: 0.361
Parameters/Metrics MRR@20
sfsknn-k=50-sample_size=1000-similarity=tanimoto 0.363
sfsknn-k=100-sample_size=5000-similarity=tanimoto 0.366
sfsknn-k=50-sample_size=2000-similarity=binary 0.361
sfsknn-k=1000-sample_size=1500-similarity=cosine 0.371
sfsknn-k=800-sample_size=1500-similarity=cosine 0.371
sfsknn-k=1000-sample_size=10000-similarity=binary 0.368
sfsknn-k=2500-sample_size=2500-similarity=tanimoto 0.371
sfsknn-k=50-sample_size=5000-similarity=cosine 0.365
sfsknn-k=2000-sample_size=5000-similarity=tanimoto 0.371
sfsknn-k=2000-sample_size=1000-similarity=tanimoto 0.371
sfsknn-k=2000-sample_size=2000-similarity=tanimoto 0.371
sfsknn-k=800-sample_size=10000-similarity=tanimoto 0.370
sfsknn-k=2000-sample_size=5000-similarity=cosine 0.371
sfsknn-k=500-sample_size=1500-similarity=cosine 0.371
sfsknn-k=1500-sample_size=5000-similarity=binary 0.369
sfsknn-k=100-sample_size=1500-similarity=tanimoto 0.366
sfsknn-k=2500-sample_size=500-similarity=cosine 0.371
sfsknn-k=1500-sample_size=5000-similarity=tanimoto 0.371
sfsknn-k=2000-sample_size=2500-similarity=cosine 0.371
sfsknn-k=1500-sample_size=500-similarity=cosine 0.371
sfsknn-k=500-sample_size=500-similarity=binary 0.369
sfsknn-k=800-sample_size=10000-similarity=cosine 0.371
sfsknn-k=500-sample_size=1000-similarity=tanimoto 0.370
sfsknn-k=800-sample_size=2000-similarity=cosine 0.371
sfsknn-k=1000-sample_size=10000-similarity=cosine 0.371
sfsknn-k=2000-sample_size=10000-similarity=tanimoto 0.371
sfsknn-k=2500-sample_size=10000-similarity=binary 0.369
sfsknn-k=100-sample_size=500-similarity=cosine 0.371
sfsknn-k=2500-sample_size=2000-similarity=binary 0.369
sfsknn-k=500-sample_size=2000-similarity=binary 0.369
sfsknn-k=100-sample_size=5000-similarity=cosine 0.369
sfsknn-k=800-sample_size=1000-similarity=binary 0.369
sfsknn-k=1500-sample_size=10000-similarity=tanimoto 0.371
sfsknn-k=1000-sample_size=2500-similarity=binary 0.368
sfsknn-k=2000-sample_size=1500-similarity=binary 0.369
sfsknn-k=2000-sample_size=1500-similarity=cosine 0.371
sfsknn-k=800-sample_size=2000-similarity=tanimoto 0.370
sfsknn-k=50-sample_size=2500-similarity=binary 0.361
sfsknn-k=800-sample_size=1000-similarity=cosine 0.371
sfsknn-k=100-sample_size=2500-similarity=tanimoto 0.366
sfsknn-k=1500-sample_size=2500-similarity=tanimoto 0.371
sfsknn-k=100-sample_size=2000-similarity=tanimoto 0.366
sfsknn-k=2500-sample_size=500-similarity=binary 0.369
sfsknn-k=2500-sample_size=1500-similarity=binary 0.369
sfsknn-k=2500-sample_size=5000-similarity=tanimoto 0.371
sfsknn-k=800-sample_size=5000-similarity=cosine 0.371
sfsknn-k=1000-sample_size=1000-similarity=cosine 0.371
sfsknn-k=50-sample_size=1500-similarity=tanimoto 0.363
sfsknn-k=100-sample_size=5000-similarity=binary 0.364
sfsknn-k=500-sample_size=1000-similarity=binary 0.368
sfsknn-k=2500-sample_size=2000-similarity=cosine 0.371
sfsknn-k=500-sample_size=2500-similarity=cosine 0.371
sfsknn-k=800-sample_size=500-similarity=tanimoto 0.371
sfsknn-k=1000-sample_size=1500-similarity=binary 0.368
sfsknn-k=500-sample_size=1500-similarity=tanimoto 0.370
sfsknn-k=1000-sample_size=2000-similarity=tanimoto 0.370
sfsknn-k=2000-sample_size=500-similarity=binary 0.369
sfsknn-k=50-sample_size=500-similarity=tanimoto 0.364
sfsknn-k=500-sample_size=10000-similarity=binary 0.369
sfsknn-k=500-sample_size=2500-similarity=tanimoto 0.370
sfsknn-k=100-sample_size=1000-similarity=tanimoto 0.366
sfsknn-k=1000-sample_size=1000-similarity=binary 0.369
sfsknn-k=800-sample_size=500-similarity=binary 0.369
sfsknn-k=50-sample_size=1500-similarity=cosine 0.365
sfsknn-k=500-sample_size=5000-similarity=tanimoto 0.370
sfsknn-k=800-sample_size=2000-similarity=binary 0.369
sfsknn-k=500-sample_size=2000-similarity=tanimoto 0.370
sfsknn-k=100-sample_size=500-similarity=tanimoto 0.367
sfsknn-k=1000-sample_size=1000-similarity=tanimoto 0.371
sfsknn-k=500-sample_size=10000-similarity=cosine 0.371
sfsknn-k=2000-sample_size=2500-similarity=binary 0.369
sfsknn-k=2000-sample_size=10000-similarity=binary 0.369
sfsknn-k=2000-sample_size=1000-similarity=cosine 0.371
sfsknn-k=50-sample_size=1000-similarity=binary 0.361
sfsknn-k=2000-sample_size=1500-similarity=tanimoto 0.371
sfsknn-k=500-sample_size=10000-similarity=tanimoto 0.370

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.239
  • Standard deviation: 0.002
  • Maximum value: 0.242
  • Minimum value: 0.236
Parameters/Metrics MRR@20
sfsknn-k=50-sample_size=5000-similarity=tanimoto 0.237
sfsknn-k=1000-sample_size=2500-similarity=tanimoto 0.240
sfsknn-k=500-sample_size=1000-similarity=tanimoto 0.240
sfsknn-k=1500-sample_size=2000-similarity=tanimoto 0.240
sfsknn-k=500-sample_size=5000-similarity=binary 0.239
sfsknn-k=1000-sample_size=10000-similarity=binary 0.239
sfsknn-k=1500-sample_size=2500-similarity=tanimoto 0.240
sfsknn-k=1500-sample_size=1000-similarity=tanimoto 0.240
sfsknn-k=50-sample_size=5000-similarity=cosine 0.239
sfsknn-k=500-sample_size=10000-similarity=tanimoto 0.240
sfsknn-k=50-sample_size=10000-similarity=tanimoto 0.237
sfsknn-k=2000-sample_size=1500-similarity=tanimoto 0.240
sfsknn-k=50-sample_size=5000-similarity=binary 0.236
sfsknn-k=1000-sample_size=2000-similarity=cosine 0.242
sfsknn-k=500-sample_size=5000-similarity=cosine 0.242
sfsknn-k=2000-sample_size=500-similarity=tanimoto 0.240
sfsknn-k=1000-sample_size=500-similarity=binary 0.239
sfsknn-k=50-sample_size=1500-similarity=cosine 0.239
sfsknn-k=2000-sample_size=1000-similarity=cosine 0.242
sfsknn-k=1000-sample_size=1500-similarity=tanimoto 0.240
sfsknn-k=500-sample_size=2000-similarity=cosine 0.242
sfsknn-k=1000-sample_size=5000-similarity=cosine 0.242
sfsknn-k=1000-sample_size=5000-similarity=binary 0.239
sfsknn-k=1000-sample_size=10000-similarity=cosine 0.242
sfsknn-k=1000-sample_size=2500-similarity=cosine 0.242
sfsknn-k=50-sample_size=2000-similarity=cosine 0.239
sfsknn-k=500-sample_size=2000-similarity=binary 0.239
sfsknn-k=100-sample_size=5000-similarity=cosine 0.239
sfsknn-k=2000-sample_size=1000-similarity=binary 0.239
sfsknn-k=100-sample_size=2500-similarity=tanimoto 0.240
sfsknn-k=1500-sample_size=2500-similarity=binary 0.239
sfsknn-k=1500-sample_size=10000-similarity=binary 0.239
sfsknn-k=2000-sample_size=2500-similarity=tanimoto 0.240
sfsknn-k=50-sample_size=1000-similarity=binary 0.236
sfsknn-k=500-sample_size=5000-similarity=tanimoto 0.240
sfsknn-k=2000-sample_size=500-similarity=cosine 0.242
sfsknn-k=2000-sample_size=5000-similarity=tanimoto 0.240
sfsknn-k=1500-sample_size=10000-similarity=tanimoto 0.240
sfsknn-k=100-sample_size=1500-similarity=tanimoto 0.240
sfsknn-k=1500-sample_size=1500-similarity=cosine 0.242
sfsknn-k=2000-sample_size=1500-similarity=cosine 0.242
sfsknn-k=500-sample_size=2000-similarity=tanimoto 0.240
sfsknn-k=1000-sample_size=2000-similarity=binary 0.239
sfsknn-k=50-sample_size=2000-similarity=binary 0.236
sfsknn-k=1000-sample_size=1500-similarity=binary 0.239
sfsknn-k=1500-sample_size=500-similarity=tanimoto 0.240
sfsknn-k=1500-sample_size=2000-similarity=cosine 0.242
sfsknn-k=50-sample_size=2500-similarity=cosine 0.239
sfsknn-k=500-sample_size=500-similarity=binary 0.239
sfsknn-k=50-sample_size=2500-similarity=tanimoto 0.237
sfsknn-k=50-sample_size=1000-similarity=cosine 0.239
sfsknn-k=50-sample_size=10000-similarity=binary 0.236
sfsknn-k=100-sample_size=1000-similarity=cosine 0.239
sfsknn-k=50-sample_size=500-similarity=cosine 0.239
sfsknn-k=500-sample_size=2500-similarity=cosine 0.242
sfsknn-k=1000-sample_size=500-similarity=cosine 0.242
sfsknn-k=1500-sample_size=1000-similarity=binary 0.239
sfsknn-k=500-sample_size=1000-similarity=binary 0.239
sfsknn-k=50-sample_size=500-similarity=binary 0.236
sfsknn-k=500-sample_size=1500-similarity=binary 0.239
sfsknn-k=100-sample_size=2000-similarity=cosine 0.239
sfsknn-k=2000-sample_size=10000-similarity=binary 0.239
sfsknn-k=2000-sample_size=1000-similarity=tanimoto 0.240
sfsknn-k=100-sample_size=2500-similarity=binary 0.241

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.591
  • Standard deviation: 0.005
  • Maximum value: 0.604
  • Minimum value: 0.588
Parameters/Metrics MRR@20
sfsknn-k=200-sample_size=500 0.589
sfsknn-k=150-sample_size=800 0.588
sfsknn-k=20-sample_size=300 0.604
sfsknn-k=30-sample_size=800 0.602
sfsknn-k=50-sample_size=1000 0.591
sfsknn-k=50-sample_size=500 0.591
sfsknn-k=200-sample_size=800 0.588
sfsknn-k=50-sample_size=300 0.590
sfsknn-k=200-sample_size=600 0.589
sfsknn-k=150-sample_size=600 0.588
sfsknn-k=150-sample_size=1000 0.588
sfsknn-k=150-sample_size=500 0.588
sfsknn-k=100-sample_size=1000 0.590

Hyperparameters for SR

We tested the following hyperparameter space:

Parameter Ranges
Steps [1 to 20]
Weighting [log, quadratic, linear, same]

Tuning on DIGI dataset

Statistical values based on MRR@20

  • Average: 0.310
  • Standard deviation: 0.019
  • Maximum value: 0.334
  • Minimum value: 0.279
Parameters/Metrics MRR@20
sr-steps=20-weighting=log 0.297
sr-steps=2-weighting=quadratic 0.332
sr-steps=18-weighting=log 0.297
sr-steps=2-weighting=linear 0.324
sr-steps=3-weighting=linear 0.310
sr-steps=15-weighting=log 0.298
sr-steps=10-weighting=linear 0.298
sr-steps=3-weighting=same 0.306
sr-steps=10-weighting=log 0.298
sr-steps=12-weighting=div 0.325
sr-steps=10-weighting=same 0.281
sr-steps=10-weighting=div 0.325
sr-steps=15-weighting=same 0.282
sr-steps=3-weighting=quadratic 0.331
sr-steps=15-weighting=quadratic 0.334
sr-steps=5-weighting=log 0.298
sr-steps=5-weighting=div 0.331
sr-steps=3-weighting=div 0.331
sr-steps=12-weighting=same 0.279
sr-steps=12-weighting=quadratic 0.334
sr-steps=15-weighting=linear 0.300
sr-steps=2-weighting=div 0.330
sr-steps=12-weighting=log 0.297
sr-steps=10-weighting=quadratic 0.334
sr-steps=3-weighting=log 0.313
sr-steps=20-weighting=quadratic 0.334
sr-steps=12-weighting=linear 0.299
sr-steps=18-weighting=linear 0.299
sr-steps=18-weighting=same 0.279
sr-steps=20-weighting=div 0.325
sr-steps=15-weighting=div 0.325
sr-steps=2-weighting=log 0.324
sr-steps=5-weighting=linear 0.299
sr-steps=20-weighting=linear 0.299
sr-steps=20-weighting=same 0.279
sr-steps=5-weighting=same 0.291

Tuning on RSC15 dataset

Statistical values based on MRR@20

  • Average: 0.229
  • Standard deviation: 0.004
  • Maximum value: 0.234
  • Minimum value: 0.220
Parameters/Metrics MRR@20
sr-steps=20-weighting=div 0.228
sr-steps=5-weighting=div 0.231
sr-steps=12-weighting=log 0.231
sr-steps=18-weighting=div 0.228
sr-steps=3-weighting=log 0.233
sr-steps=15-weighting=same 0.222
sr-steps=3-weighting=quadratic 0.231
sr-steps=18-weighting=same 0.221
sr-steps=18-weighting=log 0.230
sr-steps=5-weighting=linear 0.234
sr-steps=12-weighting=quadratic 0.225
sr-steps=20-weighting=same 0.220
sr-steps=2-weighting=quadratic 0.229
sr-steps=20-weighting=quadratic 0.225
sr-steps=12-weighting=same 0.223
sr-steps=10-weighting=log 0.230
sr-steps=3-weighting=div 0.231
sr-steps=3-weighting=linear 0.232
sr-steps=12-weighting=div 0.228
sr-steps=10-weighting=div 0.228
sr-steps=3-weighting=same 0.220
sr-steps=15-weighting=log 0.229
sr-steps=10-weighting=same 0.225
sr-steps=15-weighting=linear 0.233
sr-steps=12-weighting=linear 0.233
sr-steps=15-weighting=div 0.228
sr-steps=2-weighting=div 0.228
sr-steps=18-weighting=quadratic 0.225
sr-steps=5-weighting=quadratic 0.228
sr-steps=18-weighting=linear 0.232
sr-steps=10-weighting=linear 0.233
sr-steps=2-weighting=log 0.231
sr-steps=20-weighting=linear 0.232
sr-steps=5-weighting=log 0.234
sr-steps=10-weighting=quadratic 0.224

Tuning on RETAIL dataset

Statistical values based on MRR@20

  • Average: 0.538
  • Standard deviation: 0.014
  • Maximum value: 0.554
  • Minimum value: 0.510
Parameters/Metrics MRR@20
sr-steps=20-weighting=linear 0.530
sr-steps=5-weighting=same 0.519
sr-steps=15-weighting=div 0.550
sr-steps=2-weighting=div 0.547
sr-steps=3-weighting=same 0.530
sr-steps=3-weighting=div 0.554
sr-steps=20-weighting=log 0.534
sr-steps=12-weighting=linear 0.530
sr-steps=3-weighting=log 0.551
sr-steps=20-weighting=div 0.550
sr-steps=12-weighting=same 0.511
sr-steps=10-weighting=div 0.548
sr-steps=2-weighting=linear 0.538
sr-steps=10-weighting=log 0.534
sr-steps=18-weighting=quadratic 0.550
sr-steps=5-weighting=quadratic 0.553
sr-steps=18-weighting=div 0.550
sr-steps=18-weighting=log 0.534
sr-steps=5-weighting=linear 0.544
sr-steps=3-weighting=linear 0.551
sr-steps=10-weighting=quadratic 0.548
sr-steps=5-weighting=log 0.545
sr-steps=12-weighting=quadratic 0.550
sr-steps=15-weighting=same 0.511
sr-steps=18-weighting=same 0.511
sr-steps=20-weighting=same 0.511
sr-steps=12-weighting=log 0.534
sr-steps=2-weighting=quadratic 0.543
sr-steps=15-weighting=quadratic 0.550
sr-steps=5-weighting=div 0.552
sr-steps=10-weighting=same 0.510
sr-steps=3-weighting=quadratic 0.549
sr-steps=15-weighting=linear 0.530
sr-steps=10-weighting=linear 0.530
sr-steps=15-weighting=log 0.534
sr-steps=20-weighting=quadratic 0.550
sr-steps=18-weighting=linear 0.530

Tuning of models on test data instead of validation data

We noticed that 20% of examined works did not mention the train-test splits while 14% tuned the hyperparameters on the test split instead of the validation split. The literature indicates that tuning the models on test data is a bad practice and creates data leakage and overfitting issues, which produce overly optimistic results. In this study, we conduct experiments to know whether tuning of the models on test data leads to optimistic results. For this purpose, we select four training-efficient GNN models and they are tuned on test splits for DIGI and RSC15(1/64) datasets. After tuning, the highest MRR@20 is selected, which is compared with MRR@20, which is attained by training the selected models on test data with optimal hyperparameters. These optimal hyperparameters were attained by tuning the models on the validation split. We observe interesting results such as the performance of the COTREC model is increased by 3.8% for the DIGI dataset when tuning is done on the test data split, which is enough to make a strong argument for the publication in high-quality outlets. In addition, the tuning of models on the test splits raises questions about the credibility of reported results. Similar patterns were observed for the other models and datasets, which can be seen in the table.

Cremonesi, Paolo, and Dietmar Jannach. "Progress in recommender systems research: Crisis? What crisis?." AI Magazine 42.3 (2021): 43-54.

DIGI dataset (MRR@20)
Models Test data Validation data Diff(%)
COTREC 0.383 0.345 3.8
TAGNN 0.298 0.287 1.1
GNRRW 0.342 0.324 1.8
SR-GNN 0.343 0.327 1.6
RSC15 dataset (MRR@20)
COTREC 0.286 0.279 0.7
TAGNN 0.239 0.201 3.8
GNRRW 0.287 0.276 1.1
SR-GNN 0.257 0.201 5.6

DIGI dataset

Metrics MRR@20
GNRRW-epoch=25-lr=0.01-batch_size=128-embedding_size=120-l2=3e-05 0.328
GNRRW-epoch=20-lr=0.0056-batch_size=100-embedding_size=200-l2=3e-05 0.328
GNRRW-epoch=20-lr=1e-04-batch_size=100-embedding_size=120-l2=1e-05 0.299
GNRRW-epoch=20-lr=0.0078-batch_size=32-embedding_size=200-l2=3e-05 0.320
GNRRW-epoch=15-lr=0.0056-batch_size=32-embedding_size=64-l2=1e-05 0.333
GNRRW-epoch=15-lr=0.01-batch_size=200-embedding_size=150-l2=3e-05 0.335
GNRRW-epoch=25-lr=0.0089-batch_size=20-embedding_size=200-l2=3e-05 0.290
GNRRW-epoch=15-lr=0.01-batch_size=20-embedding_size=32-l2=1e-05 0.303
GNRRW-epoch=15-lr=0.0023-batch_size=128-embedding_size=64-l2=1e-05 0.342
GNRRW-epoch=15-lr=0.01-batch_size=32-embedding_size=200-l2=3e-05 0.311
GNRRW-epoch=15-lr=0.0089-batch_size=200-embedding_size=120-l2=1e-05 0.334
GNRRW-epoch=20-lr=0.0078-batch_size=32-embedding_size=200-l2=3e-05 0.320
GNRRW-epoch=15-lr=0.0067-batch_size=128-embedding_size=120-l2=1e-05 0.341
GNRRW-epoch=20-lr=0.01-batch_size=64-embedding_size=150-l2=3e-05 0.324
GNRRW-epoch=20-lr=0.0067-batch_size=64-embedding_size=100-l2=1e-05 0.338
GNRRW-epoch=20-lr=1e-04-batch_size=200-embedding_size=120-l2=1e-05 0.321
GNRRW-epoch=20-lr=0.0012-batch_size=32-embedding_size=150-l2=3e-05 0.336
GNRRW-epoch=20-lr=0.0056-batch_size=20-embedding_size=64-l2=3e-05 0.317
GNRRW-epoch=20-lr=0.01-batch_size=20-embedding_size=16-l2=3e-05 0.274
GNRRW-epoch=15-lr=1e-04-batch_size=20-embedding_size=64-l2=3e-05 0.336

RSC15 dataset

Metrics MRR@20
GNRRW-epoch=20-lr=0.0056-batch_size=200-embedding_size=100-l2=1e-05 0.239
GNRRW-epoch=25-lr=0.0034-batch_size=200-embedding_size=400-l2=1e-05 0.217
GNRRW-epoch=20-lr=0.0045-batch_size=20-embedding_size=200-l2=1e-05 0.249
GNRRW-epoch=25-lr=0.0056-batch_size=100-embedding_size=350-l2=1e-05 0.223
GNRRW-epoch=15-lr=0.0012-batch_size=100-embedding_size=350-l2=3e-05 0.228
GNRRW-epoch=20-lr=0.0056-batch_size=200-embedding_size=150-l2=1e-05 0.224
GNRRW-epoch=25-lr=0.0023-batch_size=32-embedding_size=32-l2=1e-05 0.271
GNRRW-epoch=15-lr=0.01-batch_size=20-embedding_size=250-l2=1e-05 0.242
GNRRW-epoch=15-lr=0.0056-batch_size=20-embedding_size=32-l2=1e-05 0.288
GNRRW-epoch=15-lr=0.01-batch_size=100-embedding_size=350-l2=1e-05 0.198
GNRRW-epoch=15-lr=0.0056-batch_size=20-embedding_size=400-l2=3e-05 0.236
GNRRW-epoch=25-lr=0.0023-batch_size=32-embedding_size=16-l2=3e-05 0.284
GNRRW-epoch=15-lr=0.01-batch_size=20-embedding_size=350-l2=3e-05 0.246
GNRRW-epoch=25-lr=0.01-batch_size=20-embedding_size=400-l2=1e-05 0.243
GNRRW-epoch=20-lr=0.0012-batch_size=20-embedding_size=64-l2=3e-05 0.275
GNRRW-epoch=20-lr=0.0023-batch_size=128-embedding_size=16-l2=3e-05 0.286
GNRRW-epoch=20-lr=0.0045-batch_size=100-embedding_size=100-l2=3e-05 0.260
GNRRW-epoch=25-lr=0.0012-batch_size=128-embedding_size=400-l2=1e-05 0.231
GNRRW-epoch=15-lr=0.0089-batch_size=20-embedding_size=16-l2=1e-05 0.277
GNRRW-epoch=20-lr=0.0012-batch_size=200-embedding_size=100-l2=3e-05 0.277
GNRRW-epoch=25-lr=0.0078-batch_size=200-embedding_size=64-l2=1e-05 0.234
GNRRW-epoch=20-lr=0.0089-batch_size=200-embedding_size=250-l2=1e-05 0.236
GNRRW-epoch=25-lr=0.0034-batch_size=20-embedding_size=16-l2=3e-05 0.264
GNRRW-epoch=15-lr=1e-04-batch_size=128-embedding_size=150-l2=3e-05 0.274
GNRRW-epoch=15-lr=0.0012-batch_size=100-embedding_size=250-l2=3e-05 0.245
GNRRW-epoch=25-lr=0.0034-batch_size=200-embedding_size=16-l2=1e-05 0.282
GNRRW-epoch=25-lr=0.0078-batch_size=200-embedding_size=350-l2=1e-05 0.241
GNRRW-epoch=15-lr=0.0067-batch_size=32-embedding_size=16-l2=3e-05 0.283
GNRRW-epoch=25-lr=0.0078-batch_size=20-embedding_size=150-l2=3e-05 0.258
GNRRW-epoch=15-lr=0.0056-batch_size=32-embedding_size=400-l2=1e-05 0.231
GNRRW-epoch=20-lr=0.0078-batch_size=128-embedding_size=300-l2=1e-05 0.219
GNRRW-epoch=15-lr=0.0089-batch_size=20-embedding_size=400-l2=1e-05 0.256
GNRRW-epoch=20-lr=0.0034-batch_size=32-embedding_size=150-l2=1e-05 0.248
GNRRW-epoch=20-lr=0.0023-batch_size=128-embedding_size=300-l2=3e-05 0.233
GNRRW-epoch=20-lr=1e-04-batch_size=32-embedding_size=32-l2=1e-05 0.286
GNRRW-epoch=15-lr=0.0089-batch_size=128-embedding_size=400-l2=1e-05 0.198
GNRRW-epoch=20-lr=0.0034-batch_size=100-embedding_size=400-l2=1e-05 0.221
GNRRW-epoch=15-lr=0.0078-batch_size=128-embedding_size=64-l2=1e-05 0.258
GNRRW-epoch=25-lr=0.0045-batch_size=20-embedding_size=150-l2=3e-05 0.243
GNRRW-epoch=15-lr=1e-04-batch_size=20-embedding_size=200-l2=1e-05 0.248
GNRRW-epoch=15-lr=1e-04-batch_size=200-embedding_size=200-l2=1e-05 0.255
GNRRW-epoch=20-lr=0.0067-batch_size=128-embedding_size=150-l2=1e-05 0.238
GNRRW-epoch=25-lr=0.0067-batch_size=32-embedding_size=250-l2=1e-05 0.259
GNRRW-epoch=25-lr=0.0078-batch_size=128-embedding_size=32-l2=3e-05 0.270
GNRRW-epoch=20-lr=0.0067-batch_size=20-embedding_size=350-l2=1e-05 0.247
GNRRW-epoch=25-lr=0.0023-batch_size=100-embedding_size=100-l2=1e-05 0.254
GNRRW-epoch=20-lr=0.0067-batch_size=200-embedding_size=64-l2=1e-05 0.262
GNRRW-epoch=15-lr=0.01-batch_size=32-embedding_size=16-l2=1e-05 0.273
GNRRW-epoch=25-lr=0.0067-batch_size=100-embedding_size=250-l2=1e-05 0.252

DIGI dataset

Metrics MRR@20
TAGNN-epoch=15-lr=0.0009-batch_size=32-embedding_size=150-l2=0.0001 0.200
TAGNN-epoch=15-lr=0.0007-batch_size=100-embedding_size=100-l2=0.0001 0.276
TAGNN-epoch=15-lr=0.001-batch_size=64-embedding_size=120-l2=1e-05 0.298
TAGNN-epoch=20-lr=0.0002-batch_size=100-embedding_size=100-l2=3e-05 0.225
TAGNN-epoch=10-lr=0.0004-batch_size=100-embedding_size=32-l2=3e-05 0.215
TAGNN-epoch=10-lr=0.0007-batch_size=20-embedding_size=120-l2=0.0001 0.194
TAGNN-epoch=10-lr=0.0009-batch_size=64-embedding_size=64-l2=0.0001 0.218
TAGNN-epoch=20-lr=0.006-batch_size=20-embedding_size=200-l2=3e-05 0.155
TAGNN-epoch=20-lr=0.0004-batch_size=64-embedding_size=200-l2=1e-05 0.235
TAGNN-epoch=15-lr=0.006-batch_size=128-embedding_size=128-l2=1e-05 0.271
TAGNN-epoch=20-lr=0.004-batch_size=128-embedding_size=150-l2=1e-05 0.249
TAGNN-epoch=10-lr=0.003-batch_size=20-embedding_size=64-l2=0.0001 0.185
TAGNN-epoch=15-lr=0.005-batch_size=64-embedding_size=128-l2=0.0001 0.207
TAGNN-epoch=15-lr=0.004-batch_size=64-embedding_size=200-l2=0.0001 0.211
TAGNN-epoch=10-lr=0.0005-batch_size=100-embedding_size=100-l2=3e-05 0.210
TAGNN-epoch=20-lr=0.0008-batch_size=20-embedding_size=100-l2=3e-05 0.256
TAGNN-epoch=10-lr=0.008-batch_size=32-embedding_size=128-l2=3e-05 0.156
TAGNN-epoch=20-lr=0.003-batch_size=20-embedding_size=64-l2=0.0001 0.188
TAGNN-epoch=15-lr=0.0006-batch_size=20-embedding_size=80-l2=0.0001 0.162
TAGNN-epoch=15-lr=0.0002-batch_size=20-embedding_size=100-l2=0.0001 0.232
TAGNN-epoch=20-lr=0.0008-batch_size=20-embedding_size=64-l2=3e-05 0.252
TAGNN-epoch=15-lr=0.005-batch_size=100-embedding_size=64-l2=1e-05 0.261
TAGNN-epoch=15-lr=0.0004-batch_size=128-embedding_size=32-l2=1e-05 0.240
TAGNN-epoch=10-lr=0.001-batch_size=20-embedding_size=200-l2=3e-05 0.225
TAGNN-epoch=10-lr=0.0005-batch_size=20-embedding_size=64-l2=3e-05 0.222

RSC15 dataset

Metrics MRR@20
TAGNN-epoch=30-lr=0.0004-batch_size=20-embedding_size=100-l2=1e-05 0.239
TAGNN-epoch=30-lr=0.0006-batch_size=100-embedding_size=64-l2=0.0001 0.170
TAGNN-epoch=30-lr=0.004-batch_size=100-embedding_size=250-l2=3e-05 0.216
TAGNN-epoch=30-lr=0.002-batch_size=64-embedding_size=100-l2=1e-05 0.200
TAGNN-epoch=30-lr=0.003-batch_size=64-embedding_size=100-l2=0.0001 0.184
TAGNN-epoch=30-lr=0.0005-batch_size=20-embedding_size=80-l2=1e-05 0.236
TAGNN-epoch=30-lr=0.0005-batch_size=32-embedding_size=100-l2=1e-05 0.228
TAGNN-epoch=30-lr=0.001-batch_size=200-embedding_size=150-l2=1e-05 0.151
TAGNN-epoch=30-lr=0.002-batch_size=100-embedding_size=32-l2=0.0001 0.232
TAGNN-epoch=30-lr=0.005-batch_size=20-embedding_size=100-l2=3e-05 0.212
TAGNN-epoch=30-lr=0.004-batch_size=128-embedding_size=80-l2=3e-05 0.201
TAGNN-epoch=30-lr=0.0004-batch_size=128-embedding_size=200-l2=1e-05 0.162
TAGNN-epoch=30-lr=1e-04-batch_size=32-embedding_size=150-l2=1e-05 0.193
TAGNN-epoch=30-lr=0.004-batch_size=20-embedding_size=32-l2=1e-05 0.217
TAGNN-epoch=30-lr=0.0004-batch_size=64-embedding_size=150-l2=3e-05 0.163
TAGNN-epoch=30-lr=0.0006-batch_size=20-embedding_size=150-l2=0.0001 0.136
TAGNN-epoch=30-lr=0.0009-batch_size=200-embedding_size=128-l2=0.0001 0.161
TAGNN-epoch=30-lr=0.004-batch_size=64-embedding_size=100-l2=0.0001 0.215
TAGNN-epoch=30-lr=0.003-batch_size=200-embedding_size=100-l2=3e-05 0.195
TAGNN-epoch=30-lr=0.005-batch_size=128-embedding_size=150-l2=0.0001 0.196
TAGNN-epoch=30-lr=0.0004-batch_size=200-embedding_size=32-l2=3e-05 0.165
TAGNN-epoch=30-lr=0.0002-batch_size=200-embedding_size=200-l2=3e-05 0.098
TAGNN-epoch=30-lr=0.001-batch_size=100-embedding_size=80-l2=1e-05 0.202
TAGNN-epoch=30-lr=0.002-batch_size=20-embedding_size=200-l2=1e-05 0.201
TAGNN-epoch=30-lr=0.0008-batch_size=32-embedding_size=128-l2=0.0001 0.139
TAGNN-epoch=30-lr=0.01-batch_size=200-embedding_size=250-l2=1e-05 0.192
TAGNN-epoch=30-lr=0.009-batch_size=20-embedding_size=150-l2=0.0001 0.160
TAGNN-epoch=30-lr=0.002-batch_size=20-embedding_size=300-l2=3e-05 0.203
TAGNN-epoch=30-lr=0.01-batch_size=200-embedding_size=300-l2=0.0001 0.057
TAGNN-epoch=30-lr=0.0008-batch_size=64-embedding_size=64-l2=1e-05 0.215
TAGNN-epoch=30-lr=0.0002-batch_size=200-embedding_size=64-l2=1e-05 0.116
TAGNN-epoch=30-lr=0.0003-batch_size=200-embedding_size=300-l2=1e-05 0.140
TAGNN-epoch=30-lr=0.0009-batch_size=100-embedding_size=100-l2=3e-05 0.178
TAGNN-epoch=30-lr=0.003-batch_size=20-embedding_size=128-l2=0.0001 0.179
TAGNN-epoch=30-lr=0.008-batch_size=64-embedding_size=250-l2=3e-05 0.156
TAGNN-epoch=30-lr=0.0003-batch_size=100-embedding_size=150-l2=1e-05 0.190
TAGNN-epoch=30-lr=1e-04-batch_size=200-embedding_size=80-l2=1e-05 0.016
TAGNN-epoch=30-lr=0.0006-batch_size=20-embedding_size=80-l2=1e-05 0.220
TAGNN-epoch=30-lr=0.001-batch_size=200-embedding_size=250-l2=3e-05 0.168
TAGNN-epoch=30-lr=0.0006-batch_size=100-embedding_size=80-l2=0.0001 0.164

DIGI dataset

Metrics MRR@20
COTREC-epoch=15-lr=0.002-batch_size=128-embedding=250-l2=4e-05 0.381
COTREC-epoch=10-lr=0.009-batch_size=80-embedding=200-l2=1e-05 0.369
COTREC-epoch=15-lr=0.003-batch_size=64-embedding=50-l2=0.0001 0.364
COTREC-epoch=20-lr=0.0002-batch_size=128-embedding=80-l2=0.0003 0.375
COTREC-epoch=15-lr=0.0004-batch_size=100-embedding=200-l2=4e-05 0.378
COTREC-epoch=20-lr=0.006-batch_size=50-embedding=80-l2=0.0001 0.376
COTREC-epoch=20-lr=0.005-batch_size=100-embedding=200-l2=1e-05 0.377
COTREC-epoch=20-lr=0.0004-batch_size=100-embedding=100-l2=0.0003 0.372
COTREC-epoch=20-lr=0.007-batch_size=50-embedding=50-l2=0.0003 0.383
COTREC-epoch=15-lr=0.008-batch_size=100-embedding=120-l2=0.0003 0.380
COTREC-epoch=15-lr=0.0004-batch_size=32-embedding=64-l2=1e-05 0.378
COTREC-epoch=20-lr=0.002-batch_size=50-embedding=120-l2=4e-05 0.375
COTREC-epoch=20-lr=0.0004-batch_size=100-embedding=128-l2=1e-05 0.374
COTREC-epoch=20-lr=0.0008-batch_size=64-embedding=50-l2=0.0003 0.379
COTREC-epoch=20-lr=1e-04-batch_size=100-embedding=120-l2=4e-05 0.375
COTREC-epoch=10-lr=0.006-batch_size=100-embedding=64-l2=4e-05 0.379
COTREC-epoch=20-lr=0.0008-batch_size=32-embedding=250-l2=4e-05 0.379
COTREC-epoch=10-lr=0.006-batch_size=32-embedding=80-l2=4e-05 0.376
COTREC-epoch=20-lr=0.007-batch_size=100-embedding=50-l2=0.0001 0.375

RSC15 dataset

Metrics MRR@20
COTREC-epoch=20-lr=0.0005-batch_size=256-embedding=250-l2=1e-05 0.279
COTREC-epoch=15-lr=0.0009-batch_size=32-embedding=64-l2=1e-05 0.284
COTREC-epoch=20-lr=0.008-batch_size=50-embedding=200-l2=0.0003 0.286
COTREC-epoch=15-lr=0.005-batch_size=32-embedding=100-l2=1e-05 0.284
COTREC-epoch=15-lr=0.002-batch_size=256-embedding=100-l2=4e-05 0.286
COTREC-epoch=10-lr=0.005-batch_size=256-embedding=64-l2=4e-05 0.280
COTREC-epoch=15-lr=0.002-batch_size=80-embedding=50-l2=0.0003 0.284
COTREC-epoch=10-lr=0.007-batch_size=100-embedding=250-l2=4e-05 0.282
COTREC-epoch=20-lr=0.0003-batch_size=100-embedding=50-l2=0.0001 0.280
COTREC-epoch=15-lr=0.007-batch_size=32-embedding=80-l2=1e-05 0.283
COTREC-epoch=15-lr=0.0004-batch_size=256-embedding=250-l2=0.0001 0.281
COTREC-epoch=20-lr=0.0007-batch_size=100-embedding=300-l2=4e-05 0.284
COTREC-epoch=15-lr=0.004-batch_size=64-embedding=250-l2=0.0003 0.280
COTREC-epoch=15-lr=0.001-batch_size=80-embedding=250-l2=0.0001 0.284
COTREC-epoch=20-lr=0.0003-batch_size=50-embedding=200-l2=0.0003 0.285
COTREC-epoch=10-lr=0.0005-batch_size=128-embedding=50-l2=0.0003 0.281
COTREC-epoch=20-lr=0.0006-batch_size=50-embedding=64-l2=0.0001 0.280
COTREC-epoch=10-lr=0.001-batch_size=128-embedding=250-l2=0.0003 0.285
COTREC-epoch=15-lr=0.006-batch_size=256-embedding=250-l2=1e-05 0.280
COTREC-epoch=15-lr=0.001-batch_size=128-embedding=50-l2=0.0003 0.280
COTREC-epoch=20-lr=0.009-batch_size=100-embedding=128-l2=1e-05 0.274
COTREC-epoch=10-lr=0.008-batch_size=64-embedding=250-l2=0.0001 0.284
COTREC-epoch=15-lr=0.0009-batch_size=80-embedding=100-l2=0.0003 0.286
COTREC-epoch=10-lr=0.001-batch_size=80-embedding=80-l2=0.0003 0.282
COTREC-epoch=15-lr=0.0002-batch_size=32-embedding=300-l2=0.0003 0.283
COTREC-epoch=20-lr=0.009-batch_size=50-embedding=128-l2=0.0003 0.277
COTREC-epoch=10-lr=1e-04-batch_size=80-embedding=64-l2=1e-05 0.277
COTREC-epoch=15-lr=0.0004-batch_size=100-embedding=100-l2=0.0003 0.284
COTREC-epoch=20-lr=0.0002-batch_size=80-embedding=100-l2=1e-05 0.284
COTREC-epoch=20-lr=0.0004-batch_size=32-embedding=100-l2=0.0003 0.284
COTREC-epoch=10-lr=0.0008-batch_size=64-embedding=100-l2=0.0003 0.284
COTREC-epoch=10-lr=0.003-batch_size=80-embedding=64-l2=4e-05 0.283
COTREC-epoch=15-lr=0.001-batch_size=64-embedding=100-l2=0.0003 0.282
COTREC-epoch=20-lr=0.0006-batch_size=64-embedding=200-l2=0.0003 0.283
COTREC-epoch=10-lr=0.004-batch_size=80-embedding=200-l2=0.0003 0.277
COTREC-epoch=15-lr=0.0009-batch_size=32-embedding=300-l2=0.0001 0.281
COTREC-epoch=20-lr=0.001-batch_size=64-embedding=50-l2=0.0003 0.282
COTREC-epoch=15-lr=0.005-batch_size=32-embedding=200-l2=1e-05 0.277
COTREC-epoch=20-lr=0.003-batch_size=80-embedding=100-l2=0.0003 0.278
COTREC-epoch=20-lr=0.001-batch_size=64-embedding=50-l2=4e-05 0.280

DIGI dataset

Metrics MRR@20
SR-GGNN-epoch=25-lr=0.0045-hidden_size=120-batch_size=128-l2=0.0001 0.303
SR-GGNN-epoch=25-lr=0.0078-hidden_size=80-batch_size=80-l2=0.0001 0.314
SR-GGNN-epoch=10-lr=1e-04-hidden_size=16-batch_size=100-l2=0.0001 0.144
SR-GGNN-epoch=20-lr=0.0012-hidden_size=200-batch_size=100-l2=0.0001 0.299
SR-GGNN-epoch=15-lr=0.0056-hidden_size=150-batch_size=64-l2=0.0001 0.318
SR-GGNN-epoch=25-lr=0.01-hidden_size=120-batch_size=64-l2=0.0001 0.310
SR-GGNN-epoch=15-lr=0.0056-hidden_size=200-batch_size=80-l2=0.0001 0.313
SR-GGNN-epoch=20-lr=0.0089-hidden_size=80-batch_size=32-l2=0.0001 0.299
SR-GGNN-epoch=15-lr=0.0089-hidden_size=32-batch_size=64-l2=0.0001 0.321
SR-GGNN-epoch=15-lr=0.0056-hidden_size=120-batch_size=80-l2=0.0001 0.293
SR-GGNN-epoch=25-lr=0.0078-hidden_size=32-batch_size=32-l2=0.0001 0.301
SR-GGNN-epoch=15-lr=1e-04-hidden_size=32-batch_size=32-l2=0.0001 0.283
SR-GGNN-epoch=20-lr=0.0056-hidden_size=64-batch_size=128-l2=0.0001 0.343
SR-GGNN-epoch=20-lr=1e-04-hidden_size=150-batch_size=32-l2=0.0001 0.300
SR-GGNN-epoch=15-lr=0.0089-hidden_size=120-batch_size=80-l2=0.0001 0.313
SR-GGNN-epoch=10-lr=0.0067-hidden_size=150-batch_size=100-l2=0.0001 0.319
SR-GGNN-epoch=25-lr=0.0078-hidden_size=32-batch_size=32-l2=0.0001 0.312
SR-GGNN-epoch=20-lr=0.01-hidden_size=64-batch_size=80-l2=0.0001 0.319
SR-GGNN-epoch=10-lr=0.0089-hidden_size=80-batch_size=100-l2=0.0001 0.304
SR-GGNN-epoch=20-lr=0.0023-hidden_size=16-batch_size=64-l2=0.0001 0.311
SR-GGNN-epoch=20-lr=0.01-hidden_size=80-batch_size=128-l2=0.0001 0.326
SR-GGNN-epoch=20-lr=0.0067-hidden_size=120-batch_size=16-l2=0.0001 0.277
SR-GGNN-epoch=20-lr=1e-04-hidden_size=80-batch_size=32-l2=0.0001 0.309
SR-GGNN-epoch=25-lr=0.0034-hidden_size=32-batch_size=128-l2=0.0001 0.329
SR-GGNN-epoch=15-lr=0.0078-hidden_size=80-batch_size=32-l2=0.0001 0.303
SR-GGNN-epoch=15-lr=0.0089-hidden_size=64-batch_size=64-l2=0.0001 0.322
SR-GGNN-epoch=15-lr=0.0067-hidden_size=80-batch_size=100-l2=0.0001 0.311
SR-GGNN-epoch=10-lr=0.0012-hidden_size=16-batch_size=100-l2=0.0001 0.306
SR-GGNN-epoch=10-lr=1e-04-hidden_size=64-batch_size=64-l2=0.0001 0.291
SR-GGNN-epoch=20-lr=0.0012-hidden_size=120-batch_size=80-l2=0.0001 0.306

RSC15 dataset

Metrics MRR@20
SR-GGNN-epoch=10-lr=1e-04-hidden_size=450-batch_size=80-l2=0.0001 0.238
SR-GGNN-epoch=25-lr=0.0045-hidden_size=64-batch_size=80-l2=0.0001 0.250
SR-GGNN-epoch=25-lr=0.0012-hidden_size=150-batch_size=32-l2=0.0001 0.233
SR-GGNN-epoch=25-lr=0.0089-hidden_size=250-batch_size=64-l2=0.0001 0.218
SR-GGNN-epoch=10-lr=0.0078-hidden_size=120-batch_size=100-l2=0.0001 0.260
SR-GGNN-epoch=10-lr=0.0056-hidden_size=450-batch_size=128-l2=0.0001 0.226
SR-GGNN-epoch=20-lr=0.0034-hidden_size=150-batch_size=80-l2=0.0001 0.231
SR-GGNN-epoch=20-lr=0.0045-hidden_size=16-batch_size=100-l2=0.0001 0.249
SR-GGNN-epoch=20-lr=1e-04-hidden_size=64-batch_size=32-l2=0.0001 0.226
SR-GGNN-epoch=10-lr=0.0012-hidden_size=16-batch_size=32-l2=0.0001 0.229
SR-GGNN-epoch=15-lr=0.0034-hidden_size=300-batch_size=128-l2=0.0001 0.251
SR-GGNN-epoch=10-lr=0.0045-hidden_size=200-batch_size=64-l2=0.0001 0.247
SR-GGNN-epoch=10-lr=0.0045-hidden_size=16-batch_size=32-l2=0.0001 0.246
SR-GGNN-epoch=25-lr=0.0067-hidden_size=200-batch_size=128-l2=0.0001 0.235
SR-GGNN-epoch=10-lr=0.0078-hidden_size=450-batch_size=32-l2=0.0001 0.122
SR-GGNN-epoch=15-lr=0.01-hidden_size=450-batch_size=32-l2=0.0001 0.096
SR-GGNN-epoch=20-lr=0.0067-hidden_size=80-batch_size=64-l2=0.0001 0.237
SR-GGNN-epoch=20-lr=0.0056-hidden_size=16-batch_size=80-l2=0.0001 0.248
SR-GGNN-epoch=10-lr=0.0045-hidden_size=450-batch_size=128-l2=0.0001 0.244
SR-GGNN-epoch=20-lr=0.0078-hidden_size=80-batch_size=64-l2=0.0001 0.251
SR-GGNN-epoch=20-lr=0.0023-hidden_size=80-batch_size=32-l2=0.0001 0.243
SR-GGNN-epoch=10-lr=0.0089-hidden_size=250-batch_size=100-l2=0.0001 0.221
SR-GGNN-epoch=10-lr=0.0045-hidden_size=250-batch_size=128-l2=0.0001 0.229
SR-GGNN-epoch=25-lr=0.0023-hidden_size=16-batch_size=128-l2=0.0001 0.220
SR-GGNN-epoch=15-lr=0.0056-hidden_size=80-batch_size=64-l2=0.0001 0.233
SR-GGNN-epoch=15-lr=0.0045-hidden_size=450-batch_size=64-l2=0.0001 0.230
SR-GGNN-epoch=25-lr=0.0067-hidden_size=150-batch_size=32-l2=0.0001 0.233
SR-GGNN-epoch=15-lr=0.0067-hidden_size=200-batch_size=128-l2=0.0001 0.231
SR-GGNN-epoch=20-lr=0.0056-hidden_size=450-batch_size=100-l2=0.0001 0.237
SR-GGNN-epoch=25-lr=0.0078-hidden_size=450-batch_size=80-l2=0.0001 0.235
SR-GGNN-epoch=10-lr=0.0089-hidden_size=120-batch_size=32-l2=0.0001 0.239
SR-GGNN-epoch=25-lr=1e-04-hidden_size=400-batch_size=16-l2=0.0001 0.239
SR-GGNN-epoch=25-lr=0.01-hidden_size=450-batch_size=64-l2=0.0001 0.152
SR-GGNN-epoch=20-lr=0.01-hidden_size=320-batch_size=128-l2=0.0001 0.220
SR-GGNN-epoch=10-lr=0.0012-hidden_size=120-batch_size=100-l2=0.0001 0.233
SR-GGNN-epoch=15-lr=0.0078-hidden_size=300-batch_size=64-l2=0.0001 0.216
SR-GGNN-epoch=25-lr=0.01-hidden_size=150-batch_size=128-l2=0.0001 0.246
SR-GGNN-epoch=25-lr=0.0078-hidden_size=370-batch_size=80-l2=0.0001 0.220
SR-GGNN-epoch=15-lr=0.0089-hidden_size=200-batch_size=32-l2=0.0001 0.221
SR-GGNN-epoch=15-lr=0.0023-hidden_size=16-batch_size=128-l2=0.0001 0.218
SR-GGNN-epoch=15-lr=1e-04-hidden_size=120-batch_size=64-l2=0.0001 0.231
SR-GGNN-epoch=25-lr=0.01-hidden_size=32-batch_size=32-l2=0.0001 0.257
SR-GGNN-epoch=20-lr=0.0045-hidden_size=150-batch_size=64-l2=0.0001 0.243
SR-GGNN-epoch=25-lr=0.0089-hidden_size=320-batch_size=128-l2=0.0001 0.240
SR-GGNN-epoch=10-lr=0.01-hidden_size=32-batch_size=128-l2=0.0001 0.253
SR-GGNN-epoch=20-lr=0.0045-hidden_size=80-batch_size=16-l2=0.0001 0.244
SR-GGNN-epoch=25-lr=0.0067-hidden_size=300-batch_size=128-l2=0.0001 0.237
SR-GGNN-epoch=15-lr=0.0067-hidden_size=32-batch_size=32-l2=0.0001 0.243
SR-GGNN-epoch=20-lr=0.0067-hidden_size=250-batch_size=64-l2=0.0001 0.233