You sort the results by clicking on the table headers.
Metrics | MRR@3 | MRR@5 | MRR@10 | MRR@20 | HitRate@3 | HitRate@5 | HitRate@10 | HitRate@20 | Cov@20 | Pop@20 | T-time(s) | P-time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SFSKNN | 0.322 | 0.337 | 0.348 | 0.351 | 0.413 | 0.480 | 0.559 | 0.604 | 0.072 | 0.071 | 4.895 | 0.006 |
STAN | 0.321 | 0.338 | 0.347 | 0.351 | 0.389 | 0.465 | 0.529 | 0.600 | 0.087 | 0.091 | 2.307 | 0.015 |
VSTAN | 0.317 | 0.332 | 0.342 | 0.346 | 0.383 | 0.449 | 0.520 | 0.581 | 0.086 | 0.084 | 2.709 | 0.014 |
SR | 0.304 | 0.324 | 0.333 | 0.337 | 0.413 | 0.497 | 0.568 | 0.617 | 0.086 | 0.075 | 7.273 | 0.004 |
VSKNN | 0.300 | 0.312 | 0.325 | 0.330 | 0.353 | 0.406 | 0.499 | 0.576 | 0.082 | 0.084 | 9.030 | 0.037 |
COTREC | 0.298 | 0.311 | 0.330 | 0.335 | 0.366 | 0.424 | 0.555 | 0.637 | 0.078 | 0.079 | 28842.562 | 1.992 |
MGS | 0.292 | 0.309 | 0.322 | 0.329 | 0.383 | 0.458 | 0.559 | 0.656 | 0.073 | 0.089 | 23453.641 | 0.016 |
SR-GNN | 0.286 | 0.305 | 0.321 | 0.327 | 0.385 | 0.469 | 0.591 | 0.688 | 0.079 | 0.078 | 3307.174 | 0.027 |
GNRRW | 0.282 | 0.303 | 0.318 | 0.324 | 0.378 | 0.469 | 0.578 | 0.667 | 0.073 | 0.078 | 9279.445 | 0.174 |
CM-HGNN | 0.274 | 0.296 | 0.310 | 0.316 | 0.361 | 0.458 | 0.561 | 0.649 | 0.072 | 0.083 | 56683.551 | 0.013 |
TAGNN | 0.243 | 0.264 | 0.279 | 0.287 | 0.333 | 0.428 | 0.544 | 0.645 | 0.073 | 0.102 | 7189.390 | 0.007 |
GCE-GNN | 0.202 | 0.216 | 0.227 | 0.236 | 0.269 | 0.333 | 0.419 | 0.553 | 0.065 | 0.097 | 69231.684 | 0.503 |
FLCSP | 0.146 | 0.159 | 0.175 | 0.184 | 0.219 | 0.280 | 0.398 | 0.525 | 0.073 | 0.075 | 2449.509 | 0.010 |
We perform a significance test by calculating session-individual metric values e.g., obtain the mean MRR values of all sessions in the test data and then use the ANOVA test to analyze whether the difference between the compared models is significant.
Null hypothesis (Ho): There is no difference in the model means
Alternative hypothesis (H1): At least one model's mean differs from the others
Significance level = 0.05
F-value = 2.509
P-value = 0.004
The P-value is less than the value of of significance level. So, we have enough evidence to reject the Ho. We now know that at least the mean of a model is different from the others. Therefore, the post hoc analysis was performed using the Tukey test to determine the mean of which model differs from the others. Our analysis reveals that the following models have different means while others have the same mean. Moreover, in the first table, we can see that the MRR@20 values of the best performing models e.g., SFSKNN, STAN, VTSAN, SR, MGS and COREC are nearly equal. Therefore, the ANOVA test reveals that top-performing models do not have significant difference among their mean MRR@20 values.
Note: we report only those cases of the Tukey test where the Ho is rejected.group1 | group2 | meandiff | p-adj | lower | upper | reject |
FLCSP | GGNN | 0.0966 | 0.0277 | 0.0052 | 0.188 | TRUE |
FLCSP | GNRWW | 0.0941 | 0.0369 | 0.0027 | 0.1855 | TRUE |
FLCSP | MGS | 0.0927 | 0.0432 | 0.0013 | 0.1841 | TRUE |
FLCSP | sfcknn | 0.1047 | 0.01 | 0.0133 | 0.1961 | TRUE |
FLCSP | sr | 0.0921 | 0.0461 | 0.0007 | 0.1835 | TRUE |
FLCSP | stan | 0.0953 | 0.0321 | 0.0039 | 0.1867 | TRUE |
FLCSP | vstan | 0.0939 | 0.0379 | 0.0025 | 0.1853 | TRUE |
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
embedding_size=16 | 0.276 | 0.289 | 0.302 | 0.310 | 0.335 | 0.396 | 0.495 | 0.596 |
embedding_size=32 | 0.292 | 0.308 | 0.322 | 0.329 | 0.357 | 0.428 | 0.538 | 0.624 |
embedding_size=64 | 0.304 | 0.322 | 0.338 | 0.343 | 0.366 | 0.441 | 0.566 | 0.632 |
embedding_size=80 | 0.303 | 0.319 | 0.335 | 0.340 | 0.374 | 0.447 | 0.557 | 0.632 |
embedding_size=100 | 0.306 | 0.325 | 0.337 | 0.343 | 0.381 | 0.465 | 0.557 | 0.639 |
embedding_size=120 | 0.301 | 0.318 | 0.335 | 0.340 | 0.368 | 0.441 | 0.566 | 0.645 |
embedding_size=150 | 0.300 | 0.314 | 0.329 | 0.337 | 0.372 | 0.437 | 0.553 | 0.654 |
embedding_size=200 | 0.296 | 0.311 | 0.328 | 0.333 | 0.368 | 0.432 | 0.563 | 0.637 |
embedding_size=230 | 0.294 | 0.313 | 0.328 | 0.334 | 0.361 | 0.447 | 0.559 | 0.641 |
embedding_size=250 | 0.306 | 0.321 | 0.337 | 0.343 | 0.376 | 0.445 | 0.563 | 0.647 |
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
embedding_size=16 | 0.286 | 0.305 | 0.320 | 0.327 | 0.370 | 0.456 | 0.566 | 0.667 |
embedding_size=32 | 0.303 | 0.320 | 0.334 | 0.342 | 0.402 | 0.475 | 0.581 | 0.684 |
embedding_size=64 | 0.302 | 0.318 | 0.330 | 0.338 | 0.404 | 0.475 | 0.566 | 0.682 |
embedding_size=80 | 0.300 | 0.318 | 0.333 | 0.339 | 0.415 | 0.492 | 0.598 | 0.688 |
embedding_size=100 | 0.295 | 0.313 | 0.328 | 0.335 | 0.391 | 0.467 | 0.583 | 0.686 |
embedding_size=120 | 0.294 | 0.312 | 0.326 | 0.333 | 0.385 | 0.467 | 0.572 | 0.677 |
embedding_size=150 | 0.306 | 0.321 | 0.336 | 0.342 | 0.406 | 0.473 | 0.583 | 0.684 |
embedding_size=200 | 0.296 | 0.314 | 0.328 | 0.335 | 0.402 | 0.477 | 0.585 | 0.682 |
embedding_size=230 | 0.291 | 0.311 | 0.325 | 0.330 | 0.385 | 0.475 | 0.574 | 0.654 |
embedding_size=250 | 0.309 | 0.328 | 0.341 | 0.347 | 0.411 | 0.495 | 0.600 | 0.677 |
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@15: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
embedding_size=16 | 0.132 | 0.146 | 0.157 | 0.163 | 0.165 | 0.187 | 0.247 | 0.333 | 0.439 |
embedding_size=32 | 0.208 | 0.226 | 0.240 | 0.244 | 0.246 | 0.295 | 0.372 | 0.480 | 0.566 |
embedding_size=64 | 0.255 | 0.276 | 0.289 | 0.293 | 0.294 | 0.344 | 0.434 | 0.535 | 0.617 |
embedding_size=80 | 0.221 | 0.241 | 0.256 | 0.261 | 0.263 | 0.295 | 0.383 | 0.495 | 0.594 |
embedding_size=100 | 0.221 | 0.243 | 0.257 | 0.262 | 0.263 | 0.310 | 0.404 | 0.514 | 0.598 |
embedding_size=120 | 0.203 | 0.219 | 0.235 | 0.240 | 0.242 | 0.288 | 0.359 | 0.473 | 0.581 |
embedding_size=150 | 0.226 | 0.239 | 0.253 | 0.258 | 0.262 | 0.305 | 0.359 | 0.467 | 0.596 |
embedding_size=200 | 0.214 | 0.232 | 0.250 | 0.254 | 0.256 | 0.290 | 0.366 | 0.505 | 0.583 |
embedding_size=230 | 0.206 | 0.226 | 0.240 | 0.244 | 0.247 | 0.299 | 0.383 | 0.490 | 0.587 |
embedding_size=250 | 0.200 | 0.219 | 0.233 | 0.237 | 0.239 | 0.303 | 0.385 | 0.488 | 0.583 |
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
embedding_size=16 | 0.175 | 0.188 | 0.200 | 0.207 | 0.245 | 0.303 | 0.396 | 0.492 |
embedding_size=32 | 0.176 | 0.189 | 0.204 | 0.211 | 0.252 | 0.310 | 0.428 | 0.540 |
embedding_size=64 | 0.158 | 0.168 | 0.183 | 0.191 | 0.228 | 0.273 | 0.381 | 0.503 |
embedding_size=80 | 0.174 | 0.186 | 0.202 | 0.209 | 0.258 | 0.312 | 0.432 | 0.527 |
embedding_size=100 | 0.159 | 0.177 | 0.191 | 0.197 | 0.222 | 0.301 | 0.402 | 0.490 |
embedding_size=120 | 0.187 | 0.203 | 0.215 | 0.222 | 0.262 | 0.333 | 0.422 | 0.525 |
embedding_size=150 | 0.165 | 0.182 | 0.195 | 0.203 | 0.234 | 0.310 | 0.398 | 0.516 |
embedding_size=200 | 0.155 | 0.170 | 0.186 | 0.192 | 0.234 | 0.303 | 0.419 | 0.514 |
embedding_size=230 | 0.190 | 0.205 | 0.218 | 0.225 | 0.265 | 0.329 | 0.430 | 0.529 |
embedding_size=250 | 0.163 | 0.183 | 0.198 | 0.205 | 0.228 | 0.316 | 0.415 | 0.523 |
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
embedding_size=16 | 0.257 | 0.277 | 0.289 | 0.297 | 0.361 | 0.447 | 0.540 | 0.654 |
embedding_size=32 | 0.272 | 0.291 | 0.307 | 0.314 | 0.372 | 0.456 | 0.576 | 0.675 |
embedding_size=64 | 0.269 | 0.289 | 0.304 | 0.312 | 0.378 | 0.465 | 0.578 | 0.688 |
embedding_size=80 | 0.287 | 0.306 | 0.318 | 0.324 | 0.389 | 0.473 | 0.563 | 0.656 |
embedding_size=100 | 0.272 | 0.289 | 0.304 | 0.311 | 0.372 | 0.452 | 0.566 | 0.671 |
embedding_size=120 | 0.270 | 0.291 | 0.303 | 0.310 | 0.383 | 0.475 | 0.568 | 0.669 |
embedding_size=150 | 0.271 | 0.292 | 0.307 | 0.313 | 0.368 | 0.462 | 0.572 | 0.660 |
embedding_size=200 | 0.284 | 0.300 | 0.315 | 0.321 | 0.394 | 0.469 | 0.576 | 0.667 |
embedding_size=230 | 0.276 | 0.294 | 0.311 | 0.318 | 0.378 | 0.460 | 0.587 | 0.680 |
embedding_size=250 | 0.279 | 0.295 | 0.309 | 0.315 | 0.394 | 0.462 | 0.572 | 0.660 |
COTREC | GNRWW | TAGNN | FLCSP | GGNN |
0.310 | 0.327 | 0.165 | 0.207 | 0.297 |
0.329 | 0.342 | 0.246 | 0.211 | 0.314 |
0.343 | 0.338 | 0.294 | 0.191 | 0.312 |
0.340 | 0.339 | 0.263 | 0.209 | 0.324 |
0.343 | 0.335 | 0.263 | 0.197 | 0.311 |
0.340 | 0.333 | 0.242 | 0.222 | 0.310 |
0.337 | 0.342 | 0.262 | 0.203 | 0.313 |
0.333 | 0.335 | 0.256 | 0.192 | 0.321 |
0.334 | 0.330 | 0.247 | 0.225 | 0.318 |
0.343 | 0.347 | 0.239 | 0.205 | 0.315 |
Null hypothesis (Ho): There is no difference in the model means UCOTREC = UGNRWW = UTAGNN = UFLCSP = UGGNN
Alternative hypothesis (H1): At least one model's mean differs from the others
Significance level = 0.05
Summary | ||||||
Groups | Count | Sum | Average | Variance | ||
COTREC | 10 | 3.350865671 | 0.3350865671 | 0.0001032043935 | ||
GNRWW | 10 | 3.368446379 | 0.3368446379 | 0.00003443092133 | ||
TAGNN | 10 | 2.476281933 | 0.2476281933 | 0.0010992159 | ||
FLCSP | 10 | 2.062314624 | 0.2062314624 | 0.0001282693332 | ||
GGNN | 10 | 3.135340815 | 0.3135340815 | 0.00005413629124 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F-value | P-value | F(critical) |
Between Groups | 0.1357081815 | 4 | 0.03392704538 | 119.5239806 | 0 | 2.578739184 |
Within Groups | 0.01277331155 | 45 | 0.0002838513678 | |||
Total | 0.1484814931 | 49 |
The F-value and critical F- value are 119.523 and 2.578, respectively. The F-value is greater than the critical F-value, therefore, we reject the Ho. The main purpose of the ANOVA test is to observe the variability between the groups/compared models. However, it does not explain about the magnitude of variability. Therefore, we use the effect size (η) to know the magnitude of variability between the models. The effect size uses the following table to explain the level of variability.
η | Size |
0.01 | small |
0.09 | medium |
0.25 | large |
Note: if less than .01, no effect is reported |
η = 0.135708181506113 / 0.148481493058201
η = 0.9139
Here we observe the large effect size between the GNN models.
References:
MRR@20 varies across of random seeds
MRR@20 vs random seeds
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
seed=1996073 | 0.305 | 0.320 | 0.336 | 0.341 | 0.374 | 0.441 | 0.559 | 0.632 |
seed=854750 | 0.301 | 0.318 | 0.332 | 0.338 | 0.368 | 0.443 | 0.551 | 0.628 |
seed=888529 | 0.300 | 0.314 | 0.330 | 0.336 | 0.372 | 0.432 | 0.553 | 0.630 |
seed=1184622 | 0.301 | 0.312 | 0.330 | 0.336 | 0.374 | 0.424 | 0.548 | 0.645 |
seed=17829 | 0.303 | 0.318 | 0.333 | 0.340 | 0.376 | 0.441 | 0.548 | 0.634 |
seed=1830297 | 0.305 | 0.321 | 0.337 | 0.342 | 0.374 | 0.447 | 0.568 | 0.634 |
seed=2143189 | 0.297 | 0.315 | 0.330 | 0.336 | 0.366 | 0.439 | 0.551 | 0.637 |
seed=2286376 | 0.290 | 0.309 | 0.325 | 0.329 | 0.355 | 0.441 | 0.557 | 0.626 |
seed=174185 | 0.299 | 0.318 | 0.334 | 0.339 | 0.368 | 0.454 | 0.566 | 0.637 |
seed=2056912 | 0.302 | 0.317 | 0.332 | 0.338 | 0.376 | 0.443 | 0.551 | 0.637 |
seed=2634968 | 0.303 | 0.318 | 0.335 | 0.341 | 0.366 | 0.434 | 0.555 | 0.643 |
seed=804381 | 0.299 | 0.319 | 0.332 | 0.339 | 0.363 | 0.454 | 0.551 | 0.639 |
seed=1918225 | 0.300 | 0.317 | 0.333 | 0.339 | 0.366 | 0.439 | 0.559 | 0.637 |
seed=2054242 | 0.301 | 0.316 | 0.331 | 0.338 | 0.370 | 0.432 | 0.546 | 0.639 |
seed=2698057 | 0.301 | 0.316 | 0.334 | 0.339 | 0.368 | 0.430 | 0.566 | 0.634 |
seed=2973600 | 0.304 | 0.319 | 0.334 | 0.341 | 0.376 | 0.441 | 0.548 | 0.647 |
seed=1386487 | 0.311 | 0.323 | 0.338 | 0.344 | 0.387 | 0.443 | 0.555 | 0.632 |
seed=2765375 | 0.300 | 0.316 | 0.334 | 0.338 | 0.363 | 0.439 | 0.568 | 0.634 |
seed=2754545 | 0.291 | 0.313 | 0.327 | 0.333 | 0.353 | 0.452 | 0.553 | 0.634 |
seed=204245 | 0.304 | 0.319 | 0.333 | 0.339 | 0.381 | 0.447 | 0.553 | 0.639 |
seed=770362 | 0.299 | 0.313 | 0.330 | 0.336 | 0.368 | 0.426 | 0.555 | 0.639 |
seed=1274950 | 0.300 | 0.317 | 0.332 | 0.338 | 0.363 | 0.439 | 0.546 | 0.639 |
seed=2920651 | 0.300 | 0.317 | 0.332 | 0.338 | 0.366 | 0.439 | 0.553 | 0.634 |
seed=2874302 | 0.301 | 0.320 | 0.335 | 0.340 | 0.366 | 0.452 | 0.555 | 0.630 |
seed=1526224 | 0.296 | 0.314 | 0.330 | 0.336 | 0.363 | 0.443 | 0.557 | 0.637 |
seed=1287909 | 0.303 | 0.323 | 0.336 | 0.342 | 0.372 | 0.462 | 0.557 | 0.645 |
seed=1536514 | 0.297 | 0.315 | 0.330 | 0.336 | 0.357 | 0.434 | 0.553 | 0.632 |
seed=1202831 | 0.304 | 0.319 | 0.336 | 0.342 | 0.370 | 0.439 | 0.561 | 0.641 |
seed=424710 | 0.299 | 0.314 | 0.329 | 0.335 | 0.376 | 0.443 | 0.557 | 0.632 |
seed=2050972 | 0.295 | 0.311 | 0.325 | 0.331 | 0.368 | 0.443 | 0.548 | 0.634 |
seed=608005 | 0.301 | 0.319 | 0.332 | 0.339 | 0.366 | 0.445 | 0.540 | 0.641 |
seed=831980 | 0.300 | 0.317 | 0.333 | 0.339 | 0.361 | 0.434 | 0.555 | 0.634 |
seed=1798918 | 0.293 | 0.312 | 0.327 | 0.333 | 0.359 | 0.441 | 0.561 | 0.634 |
seed=384211 | 0.303 | 0.322 | 0.335 | 0.340 | 0.366 | 0.452 | 0.553 | 0.634 |
MRR@20 varies across of random seeds
MRR@20 vs random seeds
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
seed=1447236 | 0.299 | 0.315 | 0.329 | 0.336 | 0.398 | 0.471 | 0.576 | 0.671 |
seed=1304289 | 0.298 | 0.320 | 0.333 | 0.340 | 0.383 | 0.480 | 0.581 | 0.684 |
seed=87127 | 0.292 | 0.312 | 0.328 | 0.334 | 0.378 | 0.469 | 0.581 | 0.665 |
seed=1881266 | 0.296 | 0.316 | 0.332 | 0.339 | 0.385 | 0.473 | 0.594 | 0.697 |
seed=2840823 | 0.291 | 0.312 | 0.325 | 0.332 | 0.387 | 0.475 | 0.574 | 0.673 |
seed=1851086 | 0.302 | 0.318 | 0.334 | 0.341 | 0.389 | 0.456 | 0.581 | 0.675 |
seed=1075394 | 0.304 | 0.319 | 0.334 | 0.342 | 0.396 | 0.462 | 0.570 | 0.673 |
seed=493588 | 0.297 | 0.314 | 0.331 | 0.337 | 0.391 | 0.462 | 0.594 | 0.680 |
seed=1592372 | 0.306 | 0.329 | 0.341 | 0.348 | 0.387 | 0.486 | 0.574 | 0.675 |
seed=167556 | 0.306 | 0.323 | 0.338 | 0.345 | 0.394 | 0.465 | 0.585 | 0.697 |
seed=2886392 | 0.296 | 0.315 | 0.327 | 0.334 | 0.394 | 0.475 | 0.568 | 0.675 |
seed=712613 | 0.307 | 0.322 | 0.336 | 0.344 | 0.400 | 0.462 | 0.570 | 0.673 |
seed=803331 | 0.310 | 0.328 | 0.342 | 0.348 | 0.398 | 0.475 | 0.583 | 0.671 |
seed=738772 | 0.296 | 0.314 | 0.328 | 0.335 | 0.394 | 0.475 | 0.572 | 0.675 |
seed=628465 | 0.296 | 0.314 | 0.328 | 0.335 | 0.387 | 0.462 | 0.572 | 0.667 |
seed=2958120 | 0.303 | 0.319 | 0.333 | 0.342 | 0.396 | 0.465 | 0.563 | 0.690 |
seed=207155 | 0.301 | 0.317 | 0.331 | 0.338 | 0.391 | 0.462 | 0.561 | 0.669 |
seed=1096544 | 0.297 | 0.318 | 0.332 | 0.339 | 0.381 | 0.471 | 0.578 | 0.680 |
seed=1746569 | 0.317 | 0.332 | 0.346 | 0.353 | 0.415 | 0.482 | 0.589 | 0.686 |
seed=420360 | 0.308 | 0.326 | 0.337 | 0.345 | 0.402 | 0.480 | 0.568 | 0.673 |
seed=48698 | 0.306 | 0.321 | 0.335 | 0.343 | 0.400 | 0.462 | 0.570 | 0.684 |
seed=2866263 | 0.292 | 0.310 | 0.325 | 0.333 | 0.381 | 0.458 | 0.561 | 0.673 |
seed=2588109 | 0.307 | 0.328 | 0.337 | 0.346 | 0.391 | 0.484 | 0.557 | 0.677 |
seed=2442223 | 0.307 | 0.323 | 0.337 | 0.343 | 0.396 | 0.465 | 0.572 | 0.662 |
seed=2795284 | 0.289 | 0.308 | 0.320 | 0.328 | 0.387 | 0.467 | 0.563 | 0.673 |
seed=2083911 | 0.306 | 0.322 | 0.337 | 0.343 | 0.394 | 0.467 | 0.572 | 0.660 |
seed=1226771 | 0.306 | 0.323 | 0.335 | 0.342 | 0.404 | 0.482 | 0.574 | 0.667 |
seed=2477232 | 0.312 | 0.329 | 0.344 | 0.349 | 0.400 | 0.475 | 0.585 | 0.667 |
seed=127267 | 0.310 | 0.330 | 0.345 | 0.351 | 0.383 | 0.473 | 0.591 | 0.675 |
seed=895429 | 0.287 | 0.308 | 0.323 | 0.330 | 0.378 | 0.473 | 0.578 | 0.684 |
seed=1299549 | 0.306 | 0.325 | 0.341 | 0.346 | 0.400 | 0.482 | 0.598 | 0.673 |
seed=477658 | 0.309 | 0.326 | 0.342 | 0.350 | 0.387 | 0.460 | 0.583 | 0.688 |
seed=700523 | 0.299 | 0.314 | 0.330 | 0.336 | 0.389 | 0.454 | 0.578 | 0.671 |
seed=1974593 | 0.300 | 0.321 | 0.333 | 0.340 | 0.400 | 0.492 | 0.583 | 0.684 |
seed=851690 | 0.297 | 0.317 | 0.328 | 0.336 | 0.394 | 0.480 | 0.563 | 0.677 |
seed=1957974 | 0.299 | 0.318 | 0.331 | 0.338 | 0.389 | 0.473 | 0.572 | 0.665 |
seed=2553520 | 0.296 | 0.314 | 0.329 | 0.338 | 0.387 | 0.465 | 0.574 | 0.690 |
seed=2047942 | 0.292 | 0.310 | 0.326 | 0.333 | 0.376 | 0.456 | 0.570 | 0.677 |
seed=1995953 | 0.303 | 0.319 | 0.332 | 0.340 | 0.402 | 0.473 | 0.572 | 0.680 |
seed=1785178 | 0.314 | 0.332 | 0.343 | 0.351 | 0.398 | 0.477 | 0.561 | 0.673 |
seed=123577 | 0.305 | 0.324 | 0.338 | 0.346 | 0.387 | 0.471 | 0.581 | 0.684 |
seed=402210 | 0.302 | 0.324 | 0.338 | 0.346 | 0.374 | 0.471 | 0.570 | 0.682 |
seed=709883 | 0.293 | 0.312 | 0.327 | 0.334 | 0.378 | 0.458 | 0.570 | 0.669 |
seed=534417 | 0.295 | 0.315 | 0.329 | 0.336 | 0.389 | 0.480 | 0.585 | 0.675 |
seed=1919455 | 0.296 | 0.315 | 0.329 | 0.336 | 0.381 | 0.467 | 0.568 | 0.665 |
seed=138216 | 0.299 | 0.317 | 0.332 | 0.338 | 0.389 | 0.471 | 0.583 | 0.675 |
seed=1682370 | 0.312 | 0.328 | 0.341 | 0.348 | 0.411 | 0.482 | 0.578 | 0.680 |
seed=252274 | 0.314 | 0.331 | 0.346 | 0.353 | 0.404 | 0.477 | 0.583 | 0.686 |
seed=917448 | 0.304 | 0.321 | 0.337 | 0.344 | 0.394 | 0.465 | 0.587 | 0.675 |
seed=2813644 | 0.296 | 0.319 | 0.331 | 0.338 | 0.394 | 0.495 | 0.581 | 0.688 |
MRR@20 varies across of random seeds
MRR@20 vs random seeds
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
seed=2156700 | 0.199 | 0.218 | 0.235 | 0.241 | 0.292 | 0.378 | 0.505 | 0.589 |
seed=2625800 | 0.219 | 0.246 | 0.261 | 0.267 | 0.310 | 0.426 | 0.533 | 0.626 |
seed=1019900 | 0.233 | 0.250 | 0.264 | 0.272 | 0.314 | 0.389 | 0.497 | 0.606 |
seed=1169800 | 0.201 | 0.220 | 0.240 | 0.247 | 0.284 | 0.366 | 0.505 | 0.604 |
seed=8510500 | 0.204 | 0.216 | 0.237 | 0.244 | 0.286 | 0.338 | 0.492 | 0.596 |
seed=3405000 | 0.197 | 0.220 | 0.234 | 0.241 | 0.301 | 0.400 | 0.503 | 0.606 |
seed=7621100 | 0.192 | 0.212 | 0.227 | 0.234 | 0.282 | 0.370 | 0.480 | 0.581 |
seed=6717900 | 0.228 | 0.244 | 0.259 | 0.266 | 0.308 | 0.378 | 0.495 | 0.594 |
seed=4359300 | 0.207 | 0.224 | 0.243 | 0.249 | 0.284 | 0.361 | 0.503 | 0.596 |
seed=6402500 | 0.225 | 0.242 | 0.258 | 0.266 | 0.310 | 0.385 | 0.508 | 0.619 |
seed=374300 | 0.232 | 0.246 | 0.263 | 0.268 | 0.331 | 0.391 | 0.514 | 0.585 |
seed=1765400 | 0.202 | 0.221 | 0.233 | 0.240 | 0.288 | 0.374 | 0.462 | 0.572 |
seed=7477300 | 0.232 | 0.254 | 0.267 | 0.275 | 0.323 | 0.417 | 0.516 | 0.626 |
seed=2982000 | 0.225 | 0.245 | 0.260 | 0.267 | 0.318 | 0.406 | 0.516 | 0.632 |
seed=7066500 | 0.229 | 0.242 | 0.261 | 0.270 | 0.318 | 0.374 | 0.520 | 0.641 |
seed=7864000 | 0.216 | 0.235 | 0.250 | 0.257 | 0.292 | 0.376 | 0.488 | 0.589 |
seed=1964600 | 0.203 | 0.221 | 0.235 | 0.242 | 0.303 | 0.383 | 0.490 | 0.594 |
seed=9114700 | 0.233 | 0.247 | 0.261 | 0.268 | 0.303 | 0.366 | 0.475 | 0.570 |
seed=9102300 | 0.200 | 0.216 | 0.231 | 0.240 | 0.280 | 0.348 | 0.465 | 0.587 |
seed=5097000 | 0.200 | 0.218 | 0.235 | 0.243 | 0.282 | 0.361 | 0.477 | 0.596 |
seed=9151700 | 0.233 | 0.255 | 0.269 | 0.277 | 0.318 | 0.415 | 0.523 | 0.630 |
seed=5503200 | 0.220 | 0.235 | 0.251 | 0.258 | 0.297 | 0.361 | 0.482 | 0.583 |
seed=5008900 | 0.225 | 0.241 | 0.258 | 0.265 | 0.320 | 0.391 | 0.512 | 0.615 |
seed=9707200 | 0.186 | 0.201 | 0.218 | 0.228 | 0.275 | 0.342 | 0.471 | 0.615 |
seed=5080000 | 0.242 | 0.263 | 0.273 | 0.281 | 0.333 | 0.426 | 0.503 | 0.606 |
MRR@20 varies across of random seeds
MRR@20 vs random seeds
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
seed=851200 | 0.163 | 0.185 | 0.200 | 0.207 | 0.222 | 0.316 | 0.437 | 0.533 |
seed=3238900 | 0.176 | 0.193 | 0.207 | 0.215 | 0.245 | 0.316 | 0.424 | 0.531 |
seed=2971600 | 0.165 | 0.180 | 0.195 | 0.203 | 0.226 | 0.290 | 0.406 | 0.525 |
seed=1863000 | 0.166 | 0.181 | 0.195 | 0.204 | 0.239 | 0.303 | 0.406 | 0.531 |
seed=6541600 | 0.163 | 0.182 | 0.198 | 0.207 | 0.215 | 0.299 | 0.415 | 0.544 |
seed=3411300 | 0.162 | 0.180 | 0.195 | 0.203 | 0.237 | 0.316 | 0.426 | 0.538 |
seed=4766000 | 0.165 | 0.182 | 0.195 | 0.202 | 0.237 | 0.312 | 0.411 | 0.520 |
seed=3108300 | 0.160 | 0.180 | 0.193 | 0.202 | 0.228 | 0.318 | 0.417 | 0.542 |
seed=3605600 | 0.160 | 0.173 | 0.186 | 0.194 | 0.222 | 0.277 | 0.376 | 0.501 |
seed=7563200 | 0.177 | 0.193 | 0.206 | 0.216 | 0.254 | 0.323 | 0.419 | 0.553 |
seed=7407300 | 0.175 | 0.192 | 0.207 | 0.214 | 0.239 | 0.316 | 0.428 | 0.525 |
seed=5491200 | 0.162 | 0.179 | 0.190 | 0.200 | 0.243 | 0.316 | 0.400 | 0.555 |
seed=7271100 | 0.166 | 0.180 | 0.196 | 0.203 | 0.237 | 0.299 | 0.415 | 0.527 |
seed=9514600 | 0.151 | 0.171 | 0.184 | 0.191 | 0.228 | 0.312 | 0.411 | 0.518 |
seed=5767800 | 0.166 | 0.179 | 0.191 | 0.199 | 0.243 | 0.303 | 0.391 | 0.505 |
seed=6856200 | 0.153 | 0.173 | 0.184 | 0.194 | 0.222 | 0.308 | 0.394 | 0.533 |
seed=2725700 | 0.155 | 0.168 | 0.181 | 0.189 | 0.222 | 0.282 | 0.381 | 0.505 |
seed=4395900 | 0.179 | 0.197 | 0.210 | 0.217 | 0.249 | 0.331 | 0.428 | 0.525 |
seed=8766000 | 0.162 | 0.178 | 0.192 | 0.200 | 0.224 | 0.295 | 0.406 | 0.518 |
seed=3461600 | 0.167 | 0.189 | 0.201 | 0.208 | 0.234 | 0.329 | 0.422 | 0.531 |
seed=3184400 | 0.172 | 0.185 | 0.200 | 0.210 | 0.234 | 0.288 | 0.404 | 0.548 |
seed=4451000 | 0.155 | 0.172 | 0.186 | 0.192 | 0.217 | 0.288 | 0.394 | 0.482 |
seed=2861600 | 0.177 | 0.191 | 0.207 | 0.214 | 0.241 | 0.303 | 0.424 | 0.527 |
seed=3847600 | 0.173 | 0.188 | 0.203 | 0.212 | 0.243 | 0.308 | 0.426 | 0.546 |
seed=9242000 | 0.153 | 0.167 | 0.183 | 0.191 | 0.224 | 0.286 | 0.404 | 0.512 |
seed=5152200 | 0.176 | 0.189 | 0.205 | 0.214 | 0.245 | 0.299 | 0.426 | 0.553 |
seed=8868300 | 0.129 | 0.147 | 0.163 | 0.172 | 0.181 | 0.262 | 0.383 | 0.520 |
seed=6399100 | 0.175 | 0.191 | 0.204 | 0.213 | 0.254 | 0.323 | 0.424 | 0.544 |
seed=602300 | 0.164 | 0.177 | 0.192 | 0.197 | 0.254 | 0.312 | 0.424 | 0.508 |
seed=8556600 | 0.168 | 0.182 | 0.195 | 0.204 | 0.243 | 0.303 | 0.409 | 0.531 |
seed=900000 | 0.158 | 0.177 | 0.189 | 0.198 | 0.243 | 0.323 | 0.417 | 0.538 |
seed=724600 | 0.154 | 0.169 | 0.184 | 0.192 | 0.217 | 0.280 | 0.396 | 0.505 |
seed=8223300 | 0.155 | 0.171 | 0.185 | 0.193 | 0.217 | 0.288 | 0.396 | 0.510 |
seed=2641400 | 0.165 | 0.181 | 0.195 | 0.205 | 0.230 | 0.303 | 0.409 | 0.557 |
seed=8817900 | 0.174 | 0.193 | 0.208 | 0.217 | 0.237 | 0.318 | 0.437 | 0.557 |
seed=4217200 | 0.168 | 0.182 | 0.197 | 0.206 | 0.239 | 0.301 | 0.413 | 0.538 |
seed=9522300 | 0.159 | 0.177 | 0.191 | 0.199 | 0.215 | 0.290 | 0.394 | 0.523 |
seed=3571000 | 0.167 | 0.183 | 0.195 | 0.203 | 0.241 | 0.310 | 0.400 | 0.512 |
seed=6604100 | 0.157 | 0.174 | 0.187 | 0.196 | 0.239 | 0.316 | 0.413 | 0.555 |
seed=2226700 | 0.174 | 0.189 | 0.201 | 0.209 | 0.254 | 0.320 | 0.406 | 0.527 |
seed=740400 | 0.173 | 0.190 | 0.203 | 0.211 | 0.247 | 0.320 | 0.426 | 0.535 |
seed=7336000 | 0.169 | 0.187 | 0.202 | 0.209 | 0.237 | 0.314 | 0.426 | 0.527 |
seed=2197700 | 0.160 | 0.183 | 0.196 | 0.205 | 0.230 | 0.329 | 0.426 | 0.563 |
seed=5396900 | 0.175 | 0.189 | 0.200 | 0.209 | 0.265 | 0.331 | 0.415 | 0.538 |
seed=3416000 | 0.160 | 0.180 | 0.189 | 0.198 | 0.232 | 0.318 | 0.389 | 0.518 |
seed=1039800 | 0.162 | 0.179 | 0.193 | 0.199 | 0.228 | 0.301 | 0.411 | 0.501 |
seed=4015400 | 0.154 | 0.176 | 0.188 | 0.196 | 0.219 | 0.312 | 0.402 | 0.516 |
seed=5080900 | 0.154 | 0.174 | 0.188 | 0.196 | 0.222 | 0.305 | 0.419 | 0.525 |
seed=9209300 | 0.179 | 0.198 | 0.210 | 0.216 | 0.247 | 0.329 | 0.424 | 0.512 |
seed=3671400 | 0.171 | 0.190 | 0.203 | 0.211 | 0.234 | 0.316 | 0.417 | 0.523 |
MRR@20 varies across of random seeds
MRR@20 vs random seeds
Metrics | MRR@3: | MRR@5: | MRR@10: | MRR@20: | HitRate@3: | HitRate@5: | HitRate@10: | HitRate@20: |
seed=4116600 | 0.278 | 0.299 | 0.314 | 0.322 | 0.381 | 0.469 | 0.585 | 0.690 |
seed=1448500 | 0.275 | 0.297 | 0.313 | 0.320 | 0.359 | 0.458 | 0.578 | 0.677 |
seed=5464300 | 0.274 | 0.292 | 0.307 | 0.315 | 0.383 | 0.462 | 0.578 | 0.692 |
seed=8419700 | 0.281 | 0.302 | 0.320 | 0.327 | 0.376 | 0.465 | 0.600 | 0.708 |
seed=5415500 | 0.261 | 0.285 | 0.302 | 0.309 | 0.359 | 0.465 | 0.585 | 0.686 |
seed=5744100 | 0.279 | 0.303 | 0.316 | 0.322 | 0.394 | 0.497 | 0.596 | 0.680 |
seed=5835200 | 0.277 | 0.301 | 0.314 | 0.322 | 0.376 | 0.480 | 0.581 | 0.692 |
seed=7885800 | 0.287 | 0.303 | 0.319 | 0.326 | 0.391 | 0.465 | 0.583 | 0.677 |
seed=1751600 | 0.283 | 0.303 | 0.319 | 0.327 | 0.378 | 0.465 | 0.589 | 0.690 |
seed=393300 | 0.290 | 0.308 | 0.319 | 0.328 | 0.398 | 0.480 | 0.566 | 0.690 |
seed=9353400 | 0.289 | 0.306 | 0.322 | 0.331 | 0.385 | 0.462 | 0.585 | 0.705 |
seed=8454600 | 0.296 | 0.314 | 0.330 | 0.337 | 0.391 | 0.469 | 0.587 | 0.690 |
seed=8112600 | 0.265 | 0.285 | 0.303 | 0.310 | 0.353 | 0.441 | 0.578 | 0.669 |
seed=2880500 | 0.267 | 0.284 | 0.300 | 0.308 | 0.383 | 0.458 | 0.574 | 0.690 |
seed=4272900 | 0.288 | 0.307 | 0.322 | 0.331 | 0.378 | 0.462 | 0.570 | 0.692 |
seed=5626300 | 0.277 | 0.294 | 0.309 | 0.316 | 0.387 | 0.462 | 0.570 | 0.673 |
seed=5732000 | 0.291 | 0.311 | 0.325 | 0.332 | 0.387 | 0.480 | 0.589 | 0.686 |
seed=7404800 | 0.300 | 0.321 | 0.334 | 0.341 | 0.389 | 0.484 | 0.587 | 0.677 |
seed=1919800 | 0.277 | 0.294 | 0.312 | 0.319 | 0.378 | 0.454 | 0.581 | 0.682 |
seed=3354400 | 0.276 | 0.296 | 0.315 | 0.320 | 0.372 | 0.458 | 0.602 | 0.682 |
seed=1685800 | 0.303 | 0.319 | 0.333 | 0.340 | 0.400 | 0.469 | 0.576 | 0.669 |
seed=8395700 | 0.279 | 0.299 | 0.314 | 0.321 | 0.387 | 0.473 | 0.587 | 0.686 |
seed=1208800 | 0.270 | 0.287 | 0.303 | 0.311 | 0.381 | 0.458 | 0.578 | 0.695 |
seed=3102900 | 0.283 | 0.303 | 0.320 | 0.326 | 0.372 | 0.460 | 0.585 | 0.667 |
seed=3163100 | 0.269 | 0.290 | 0.306 | 0.313 | 0.368 | 0.460 | 0.574 | 0.673 |
seed=5601800 | 0.290 | 0.310 | 0.323 | 0.329 | 0.394 | 0.477 | 0.578 | 0.667 |
seed=151700 | 0.263 | 0.284 | 0.301 | 0.308 | 0.368 | 0.456 | 0.578 | 0.682 |
seed=5621500 | 0.259 | 0.281 | 0.300 | 0.307 | 0.348 | 0.447 | 0.587 | 0.686 |
seed=2264600 | 0.287 | 0.304 | 0.319 | 0.325 | 0.398 | 0.473 | 0.591 | 0.677 |
seed=3172900 | 0.280 | 0.298 | 0.315 | 0.322 | 0.385 | 0.465 | 0.591 | 0.697 |
seed=5694900 | 0.282 | 0.299 | 0.315 | 0.322 | 0.389 | 0.467 | 0.578 | 0.686 |
seed=3813500 | 0.281 | 0.305 | 0.323 | 0.329 | 0.374 | 0.482 | 0.609 | 0.699 |
seed=8295000 | 0.270 | 0.297 | 0.311 | 0.318 | 0.357 | 0.473 | 0.581 | 0.671 |
seed=5495900 | 0.277 | 0.295 | 0.314 | 0.321 | 0.368 | 0.445 | 0.589 | 0.692 |
seed=7106200 | 0.302 | 0.318 | 0.336 | 0.342 | 0.404 | 0.477 | 0.613 | 0.705 |
COTREC | GNRRW | TAGNN | FLCSP | GGNN |
0.3409937 | 0.33599206 | 0.2409126 | 0.2065565 | 0.3218514 |
0.3376615 | 0.34049176 | 0.2671731 | 0.2150780 | 0.3196387 |
0.3360568 | 0.33384089 | 0.2719202 | 0.2032149 | 0.3150520 |
0.3364039 | 0.33920997 | 0.2466212 | 0.2038967 | 0.3270256 |
0.3395593 | 0.33225052 | 0.2441588 | 0.2071149 | 0.3085969 |
0.3417518 | 0.34050359 | 0.2408133 | 0.2030578 | 0.3219477 |
0.3358070 | 0.34157847 | 0.2343214 | 0.2023181 | 0.3219050 |
0.3294316 | 0.33690436 | 0.2658386 | 0.2021730 | 0.3257824 |
0.3385516 | 0.34753455 | 0.2494611 | 0.1944837 | 0.3266497 |
0.3379797 | 0.34518535 | 0.2662642 | 0.2156291 | 0.3278797 |
0.3405640 | 0.33449492 | 0.2681523 | 0.2141539 | 0.3308277 |
0.3385499 | 0.34387576 | 0.2400835 | 0.2003993 | 0.3369646 |
0.3385337 | 0.34791349 | 0.2747149 | 0.2031463 | 0.3096330 |
0.3376391 | 0.33509712 | 0.2674166 | 0.1910997 | 0.3084844 |
0.3392099 | 0.33452941 | 0.2699714 | 0.1991495 | 0.3305054 |
0.3409725 | 0.34168398 | 0.2573615 | 0.1941384 | 0.3159991 |
0.3439723 | 0.33834337 | 0.2423687 | 0.1894486 | 0.3318970 |
0.3382212 | 0.33945972 | 0.2679075 | 0.2170486 | 0.3408552 |
0.3327706 | 0.35296907 | 0.2401311 | 0.1999889 | 0.3188616 |
0.3386084 | 0.34456512 | 0.2427355 | 0.2084436 | 0.3202280 |
0.3359206 | 0.34302696 | 0.2766572 | 0.2101228 | 0.3398760 |
0.3381904 | 0.33284777 | 0.2577398 | 0.1916497 | 0.3208971 |
0.3378326 | 0.34612621 | 0.2649578 | 0.2138115 | 0.3110524 |
0.3400954 | 0.34324776 | 0.2280838 | 0.2120328 | 0.3260680 |
0.3355072 | 0.32798605 | 0.2805328 | 0.1907867 | 0.3131729 |
0.3420006 | 0.34320468 | 0.2141117 | 0.3291776 | |
0.3361578 | 0.34163871 | 0.1721716 | 0.3079964 | |
0.3419555 | 0.34923896 | 0.2126700 | 0.3072804 | |
0.3349865 | 0.35120298 | 0.1974497 | 0.3251047 | |
0.3313467 | 0.32971577 | 0.2041034 | 0.3220460 | |
0.3392978 | 0.34585229 | 0.1975199 | 0.3219706 | |
0.3388039 | 0.34994560 | 0.1921189 | 0.3290076 | |
0.3327864 | 0.33646468 | 0.1927468 | 0.3177662 | |
0.3403953 | 0.33990110 | 0.2049453 | 0.3208899 | |
0.33623396 | 0.2167602 | 0.3423190 | ||
0.33762308 | 0.2058433 | |||
0.33762454 | 0.1994011 | |||
0.33330213 | 0.2027731 | |||
0.33991445 | 0.1963051 | |||
0.35101249 | 0.2091475 | |||
0.34575456 | 0.2106636 | |||
0.34615514 | 0.2093573 | |||
0.33388054 | 0.2053261 | |||
0.33553872 | 0.2088231 | |||
0.33578366 | 0.1983147 | |||
0.33838848 | 0.1990353 | |||
0.34806194 | 0.1960416 | |||
0.35296958 | 0.1956724 | |||
0.34350593 | 0.2163352 | |||
0.33812976 | 0.2106004 |
Null hypothesis (Ho): There is no difference in the model means UCOTREC = UGNRWW = UTAGNN = UFLCSP = UGGNN
Alternative hypothesis (H1): At least one model's mean differs from the others
Significance level = 0.05
Summary | ||||||
Groups | Count | Sum | Average | Variance | ||
COTREC | 34 | 11.48851541 | 0.3378975119 | 0.000009992151219 | ||
GNRRW | 50 | 17.04070195 | 0.340814039 | 0.00003779439459 | ||
TAGNN | 25 | 6.406298825 | 0.256251953 | 0.000229300123 | ||
FLCSP | 50 | 10.15718027 | 0.2031436054 | 0.00008132955373 | ||
GGNN | 35 | 11.29520972 | 0.3227202778 | 0.00008863380708 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F-value | P-value | F(critical) |
Between Groups | 0.650167345 | 4 | 0.1625418362 | 2092.16244 | 0 | 2.419440031 |
Within Groups | 0.01468356685 | 189 | 0.0000776908299 | |||
Total | 0.6648509118 | 193 |
The F-value and critical F- value are 2092.162 and 2.4194, respectively. The F-value is greater than the critical F-value, therefore, we reject the Ho. The main purpose of the ANOVA test is to observe the variability between the groups/compared models. However, it does not explain about the magnitude of variability. Therefore, we use the effect size (η) to know the magnitude of variability between the models. The effect size uses the following table to explain the level of variability.
η | Size |
0.01 | small |
0.09 | medium |
0.25 | large |
Note: if less than .01, no effect is reported |
η = 0.650167344986137 / 0.664850911836957
η = 0.9779
Here we observe the large effect size between the GNN models.
References: